首页> 外文期刊>IEEE/ACM Transactions on Networking >Service Placement and Request Scheduling for Data-Intensive Applications in Edge Clouds
【24h】

Service Placement and Request Scheduling for Data-Intensive Applications in Edge Clouds

机译:边缘云中数据密集型应用的服务展示位置和请求调度

获取原文
获取原文并翻译 | 示例

摘要

Mobile edge computing provides the opportunity for wireless users to exploit the power of cloud computing without a large communication delay. To serve data-intensive applications (e.g., video analytics, machine learning tasks) from the edge, we need, in addition to computation resources, storage resources for storing server code and data as well as network bandwidth for receiving user-provided data. Moreover, due to time-varying demands, the code and data placement needs to be adjusted over time, which raises concerns of system stability and operation cost. In this paper, we address these issues by proposing a two-time-scale framework that jointly optimizes service (code and data) placement and request scheduling, while considering storage, communication, computation, and budget constraints. First, by analyzing the hardness of various cases, we completely characterize the complexity of our problem. Next, we develop a polynomial-time service placement algorithm by formulating our problem as a set function optimization, which attains a constant-factor approximation under certain conditions. Furthermore, we develop a polynomial-time request scheduling algorithm by computing the maximum flow in a carefully constructed auxiliary graph, which satisfies hard resource constraints and is provably optimal in the special case where requests have homogeneous resource demands. Extensive synthetic and trace-driven simulations show that the proposed algorithms achieve 90% of the optimal performance.
机译:移动边缘计算为无线用户提供了利用云计算的功率的机会,而无需大的通信延迟。除了计算资源外,我们还需要从边缘提供数据密集型应用(例如,视频分析,机器学习任务),除了计算资源,还需要用于存储服务器代码和数据的存储资源以及用于接收用户提供的数据的网络带宽。此外,由于需要时变的需求,需要随时间调整代码和数据放置,从而提高了系统稳定性和运营成本的关注。在本文中,我们通过提出共同优化服务(代码和数据)放置和请求调度的两次尺度框架来解决这些问题,同时考虑存储,通信,计算和预算约束。首先,通过分析各种情况的硬度,我们完全表征了我们问题的复杂性。接下来,我们通过将问题作为一个集合功能优化制定了多项式时间服务放置算法,这在某些条件下达到了恒定因子近似。此外,我们通过计算仔细构造的辅助图中的最大流量来开发多项式请求调度算法,该辅助图表满足硬资源限制,并且在请求具有同类资源需求的特殊情况下被证明是最佳的。广泛的合成和跟踪驱动的模拟表明,所提出的算法达到最佳性能的90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号