首页> 外文会议>IEEE Conference on Computer Communications >Service Placement and Request Scheduling for Data-intensive Applications in Edge Clouds
【24h】

Service Placement and Request Scheduling for Data-intensive Applications in Edge Clouds

机译:边缘云中数据密集型应用程序的服务放置和请求调度

获取原文

摘要

Mobile edge computing allows wireless users to exploit the power of cloud computing without the large communication delay. To serve data-intensive applications (e.g., augmented reality, video analytics) from the edge, we need, in addition to CPU cycles and memory for computation, storage resource for storing server data and network bandwidth for receiving user-provided data. Moreover, the data placement needs to be adapted over time to serve time-varying demands, while considering system stability and operation cost. We address this problem by proposing a two-time-scale framework that jointly optimizes service (data & code) placement and request scheduling, under storage, communication, computation, and budget constraints. We fully characterize the complexity of our problem by analyzing the hardness of various cases. By casting our problem as a set function optimization, we develop a polynomial-time algorithm that achieves a constant-factor approximation under certain conditions. Extensive synthetic and trace-driven simulations show that the proposed algorithm achieves 90% of the optimal performance.
机译:移动边缘计算使无线用户可以利用云计算的功能而不会造成较大的通信延迟。为了从边缘服务于数据密集型应用程序(例如增强现实,视频分析),除了需要CPU周期和用于计算的内存外,我们还需要用于存储服务器数据的存储资源和用于接收用户提供的数据的网络带宽。此外,在考虑系统稳定性和运营成本的同时,需要随时间调整数据放置以适应随时间变化的需求。我们通过提出一个两阶段规模的框架来解决此问题,该框架在存储,通信,计算和预算约束下共同优化服务(数据和代码)放置和请求调度。通过分析各种情况的难度,我们可以充分说明问题的复杂性。通过将问题转化为集合函数优化,我们开发了多项式时间算法,该算法在某些条件下可实现恒定因子近似。大量的综合和跟踪驱动的仿真表明,该算法可实现90%的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号