首页> 外文期刊>IEEE transactions on mobile computing >Robust Computation Offloading and Resource Scheduling in Cloudlet-Based Mobile Cloud Computing
【24h】

Robust Computation Offloading and Resource Scheduling in Cloudlet-Based Mobile Cloud Computing

机译:基于Cloudll的移动云计算中的强大计算卸载与资源调度

获取原文
获取原文并翻译 | 示例

摘要

Mobile cloud computing (MCC) as an emerging computing paradigm enables mobile devices to offload their computation tasks to nearby resource-rich cloudlets so as to augment computation capability and reduce energy consumption of mobile devices. However, due to the mobility of mobile devices and the admission of cloudlets, the connection between mobile devices and cloudlets may be unstable, which will affect offloading decision, even cause offloading failure. To address such an issue, in this paper, we propose a robust computation offloading strategy with failure recovery (RoFFR) in an intermittently connected cloudlet system aiming to reduce energy consumption and shorten application completion time. We first provide an optimal cloudlet selection policy when multiple cloudlets are available near mobile devices. Furthermore, we formulate the RoFFR problem as two optimization problems, i.e., local execution cost minimization problem and offloading execution cost minimization problem while satisfying the task-dependency requirement and application completion deadline constraint. By solving both optimization problems, we present a distributed RoFFR algorithm for CPU clock frequency configuration in local execution and transmission power allocation and data rate control in cloudlet execution. Experimental results in a real testbed show that our distributed RoFFR algorithm outperforms several baseline policies and existing offloading schemes in terms of application completion cost and offloading data rate.
机译:移动云计算(MCC)作为新兴计算范例使移动设备能够将其计算任务卸载到丰富的资源丰富的Cloudlet,以便增强计算能力并降低移动设备的能耗。然而,由于移动设备的移动性和Cloudlet的录取,移动设备和Cloudlet之间的连接可能是不稳定的,这将影响卸载决定,甚至导致卸载失败。为了解决此类问题,在本文中,我们提出了一种强大的计算卸载策略,其中包含故障恢复(Roffr),其旨在降低能耗和缩短应用完成时间。当多个Cloudlet可在移动设备附近提供时,我们首先提供最佳的Cloudlle选择策略。此外,我们将Roffr问题作为两个优化问题,即本地执行成本最小化问题和卸载执行成本最小化问题,同时满足任务依赖性要求和应用程序完成截止日期约束。通过解决各种优化问题,我们介绍了一种用于CPU时钟频率配置的分布式Roffr算法,在Cloudlet执行中的局部执行和传输功率分配和数据速率控制中。实验结果在实际测试平台上表明,我们的分布式Roffr算法在应用程序完成成本和卸载数据速率方面优于几个基线策略和现有的卸载方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号