首页> 外文期刊>IEEE transactions on mobile computing >Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing
【24h】

Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing

机译:移动云计算中的节能动态计算分载和协作任务调度

获取原文
获取原文并翻译 | 示例

摘要

Mobile cloud computing (MCC) as an emerging and prospective computing paradigm, can significantly enhance computation capability and save energy for smart mobile devices (SMDs) by offloading computation-intensive tasks from resource-constrained SMDs onto resource-rich cloud. However, how to achieve energy-efficient computation offloading under hard constraint for application completion time remains a challenge. To address such a challenge, in this paper, we provide an energy-efficient dynamic offloading and resource scheduling (eDors) policy to reduce energy consumption and shorten application completion time. We first formulate the eDors problem into an energy-efficiency cost (EEC) minimization problem while satisfying task-dependency requirement and completion time deadline constraint. We then propose a distributed eDors algorithm consisting of three subalgorithms of computation offloading selection, clock frequency control, and transmission power allocation. Next, we show that computation offloading selection depends on not only the computing workload of a task, but also the maximum completion time of its immediate predecessors and the clock frequency and transmission power of the mobile device. Finally, we provide experimental results in a real testbed and demonstrate that the eDors algorithm can effectively reduce EEC by optimally adjusting CPU clock frequency of SMDs in local computing, and adapting the transmission power for wireless channel conditions in cloud computing.
机译:移动云计算(MCC)作为新兴的前瞻性计算范例,可以通过将计算密集型任务从资源受限的SMD转移到资源丰富的云中来显着增强计算能力,并为智能移动设备(SMD)节省能源。但是,如何在应用程序完成时间的严格约束下实现节能计算卸载仍然是一个挑战。为了解决这一挑战,本文提供了一种节能高效的动态卸载和资源调度(eDors)策略,以减少能耗并缩短应用程序完成时间。我们首先将eDors问题公式化为能效成本(EEC)最小化问题,同时满足任务依赖性要求和完成时间期限约束。然后,我们提出了一种分布式eDors算法,该算法由计算卸载选择,时钟频率控制和传输功率分配的三个子算法组成。接下来,我们表明计算分流选择不仅取决于任务的计算工作量,还取决于其前任任务的最大完成时间以及移动设备的时钟频率和传输功率。最后,我们在真实的测试平台上提供实验结果,并证明eDors算法可以通过在本地计算中最佳地调整SMD的CPU时钟频率,并针对云计算中的无线信道条件调整传输功率,从而有效地降低EEC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号