首页> 外文期刊>IEEE transactions on mobile computing >Personalized Mobile App Recommendation by Learning User's Interest from Social Media
【24h】

Personalized Mobile App Recommendation by Learning User's Interest from Social Media

机译:通过学习来自社交媒体的兴趣来个性化的移动应用程序推荐

获取原文
获取原文并翻译 | 示例

摘要

The diversity of personal interest and preference of mobile users results in a wide spectrum of mobile app usage, and it is important to predict such app preference in order to provide personalized services. However, currently available individual app usage data is very limited, which does not cover a large user base. In this paper, we demonstrate that it is possible to make personalized app usage estimation by learning user's app preference from the social media, i.e., public accessible tweets, which can also reflect user's interest and make up for the sparsity of app usage data. By proposing a novel generative model named IMCF+ to transfer user interest from rich tweet information to sparse app usage, we achieve personalized app recommendations via learning the interest's correlation between apps and tweets. Based on a real-world app usage and tweet dataset over a large population, we evaluate the performance of IMCF+ with a variety of scenarios and parameters. With only 10 percent training data, our IMCF+ approach achieves 82.5 percent hitrate in predicting the top ten apps. Moreover, IMCF+ outperforms the other six state-of-the-art algorithms by 4.7 percent and 10 percent in high sparsity case and user cold-start scenario, indicating the effectiveness of our method. All these results demonstrate that our technique can reliably learn user's interest from tweets to help solve the personalized app recommendation problem. Our study is the first step forward for transferring user's interest learned from social media to app preference, which paves the way for providing higher-quality personalized app recommendation and services for mobile users.
机译:个人兴趣和移动用户的偏好的多样性导致广泛的移动应用程序使用,并且重要的是预测这种应用偏好,以便提供个性化服务。但是,目前可用的单独应用程序使用数据非常有限,这不会涵盖大用户群。在本文中,我们证明可以通过从社交媒体,即公共可访问的推文学习用户的应用程序首选项来进行个性化的应用程序使用估计,这也可以反映用户的兴趣并弥补应用程序使用数据的稀疏性。通过提出名为IMCF +的新型生成模型将用户兴趣从丰富的推文信息转移到稀疏的应用程序使用,我们通过学习应用程序和推文之间的关注的相关性来实现个性化应用程序建议。基于大量人口的真实应用程序使用和推文数据集,我们评估了IMCF +的性能与各种情况和参数。只有10%的培训数据,我们的IMCF +方法在预测十大应用方面实现了82.5%的酸柠檬。此外,IMCF +优于其他六种最先进的算法,在高稀稀物质和用户冷启动方案中以4.7%和10%,表明我们方法的有效性。所有这些结果表明,我们的技术可以可靠地学习来自推文的用户的兴趣,以帮助解决个性化应用程序推荐问题。我们的研究是将用户兴趣从社交媒体中学到应用程序偏好的第一步,为移动用户提供更高质量的个性化应用程序推荐和服务的方式铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号