首页> 外文期刊>IEEE transactions on mobile computing >Exploring the Social Learning of Taxi Drivers in Latent Vehicle-to-Vehicle Networks
【24h】

Exploring the Social Learning of Taxi Drivers in Latent Vehicle-to-Vehicle Networks

机译:探索潜伏车辆网络的出租车司机的社会学习

获取原文
获取原文并翻译 | 示例

摘要

With recent advances in mobile and sensor technologies, a large amount of efforts have been made on developing intelligent applications for taxi drivers, which provide beneficial guidance for improving the profit and work efficiency. However, limited scopes focus on the latent social interactions within cab drivers, and corresponding social learning mechanism to share driving behavior patterns has been largely ignored. To that end, in this paper, we propose a comprehensive study to discover how social learning affects taxi drivers' driving behaviors. To be specific, by leveraging the classic social influence theory, we develop a two-stage framework for quantitatively measuring the latent propagation of driving patterns within taxi drivers. Validations on a real-word data set collected from New York City clearly verify the effectiveness of our proposed framework with better explanation of future taxi driving pattern evolution, which prove the hypothesis that social factors indeed improve the predictability of taxi driving behaviors, and further reveal some interesting rules on social learning mechanism.
机译:随着最近的移动和传感器技术的进展,对开发出租车司机的智能申请来说,已经提出了大量努力,这为提高利润和工作效率提供了有益的指导。然而,有限的范围专注于出租车驾驶员内的潜在社交互动,并且相应的社会学习机制分享驾驶行为模式已经很大程度上被忽略了。为此,在本文中,我们提出了一项全面的研究,以了解社交学习如何影响出租车司机的驾驶行为。具体而言,通过利用经典的社会影响理论,我们开发了一个两级框架,用于定量测量出租车司机内的驾驶模式的潜在传播。从纽约市收集的实际数据集的验证明确核实我们提出的框架的有效性,并更好地解释了未来的出租车驾驶模式演化,这证明了社会因素确实提高了出租车驾驶行为的可预测性,进一步揭示了一些关于社会学习机制的有趣规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号