首页> 外文期刊>IEEE transactions on mobile computing >Incentive Mechanism for Multiple Cooperative Tasks with Compatible Users in Mobile Crowd Sensing via Online Communities
【24h】

Incentive Mechanism for Multiple Cooperative Tasks with Compatible Users in Mobile Crowd Sensing via Online Communities

机译:通过在线社区的移动人群传感中具有兼容用户的多种合作任务的激励机制

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowd sensing emerges as a new paradigm which takes advantage of the pervasive sensor-embedded smartphones to collect data. Many incentive mechanisms for mobile crowd sensing have been proposed. However, none of them takes into consideration the cooperative compatibility of users for multiple cooperative tasks. In this paper, we design truthful incentive mechanisms to minimize the social cost such that each of the cooperative tasks can be completed by a group of compatible users. We study two bid models and formulate the Social Optimization Compatible User Selection (SOCUS) problem for each model. We also define three compatibility models and use real-life relationships from social networks to model the compatibility relationships. We design two incentive mechanisms, MCT-MMCT-M and MCT-SMCT-S, for the compatibility cases. Both of MCT-MMCT-M and MCT-SMCT-S consist of two steps: compatible user grouping and reverse auction. We further present a user grouping method through neural network model and clustering algorithm. Through both rigorous theoretical analysis and extensive simulations, we demonstrate that the proposed mechanisms achieve computational efficiency, individual rationality, and truthfulness. Moreover, MCT-MMCT-M can output the optimal solution. By using neural network and clustering algorithm for user grouping, the proposed incentive mechanisms can reduce the social cost and overpayment ratio further with less grouping time.
机译:移动人群传感作为一种新的范式,它利用普遍的传感器嵌入式智能手机来收集数据。已经提出了许多移动人群传感的激励机制。但是,他们都没有考虑用户对多个合作任务的合作兼容性。在本文中,我们设计了真实的激励机制,以最大限度地减少社会成本,使得每个合作任务都可以由一组兼容的用户完成。我们研究了两个投标模型,并为每个模型制定社会优化兼容的用户选择(SoCus)问题。我们还定义了三种兼容性模型,并使用来自社交网络的现实生活关系来模拟兼容关系。我们设计了两个激励机制,MCT-MMCT-M和MCT-SMCT-S,用于兼容性情况。 MCT-MMCT-M和MCT-SMCT-S都包含两个步骤:兼容用户分组和反向拍卖。我们通过神经网络模型和聚类算法进一步提出了一种用户分组方法。通过既严格的理论分析和广泛的模拟,我们证明了拟议的机制实现了计算效率,个人理性和真实性。此外,MCT-MMCT-M可以输出最佳解决方案。通过使用神经网络和用于用户分组的聚类算法,所提出的激励机制可以进一步降低社会成本和超额支付比率,但较少的分组时间。

著录项

  • 来源
    《IEEE transactions on mobile computing》 |2020年第7期|1618-1633|共16页
  • 作者单位

    Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing 210023 Jiangsu Peoples R China|Colorado Sch Mines Golden CO 80401 USA;

    Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing 210023 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile crowd sensing; incentive mechanism design; online community; compatibility;

    机译:移动人群传感;激励机制设计;在线社区;兼容性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号