首页> 外文期刊>IEEE transactions on mobile computing >Razor: Scaling Backend Capacity for Mobile Applications
【24h】

Razor: Scaling Backend Capacity for Mobile Applications

机译:剃刀:缩放移动应用程序的后端容量

获取原文
获取原文并翻译 | 示例

摘要

The dramatic growth of mobile application usage has posed great pressure on application developers to better manage their backend capacity. Rule-based or schedule-based auto-scaling mechanisms have been proposed, but it is difficult or expensive to frequently adjust the backend capacity to track the burstiness of mobile traffic. In this paper, we explore a fundamentally different approach. Instead of scaling the backend in line with the mobile traffic, we smooth out traffic profiles to reduce the required backend capacity and increase its utilization. Our proposed solution, called Razor, is inspired by two key insights on mobile traffic. First, mobile traffic exhibits high short-term fluctuations but steady long-term trend, so that we may temporarily delay user requests and periodically adapt backend capacity based on the predicted traffic volume. Second, user requests have different priorities: while some requests are urgent (e.g., sending a message), some are delay-tolerant (e.g., changing the profile photo) and can be postponed without much influence on the user experience. Based on these observations, our design features a two-tier architecture: on a long timescale, Razor predicts future traffic using machine learning algorithms and plans the optimal backend capacity to minimize the budget with performance guarantee; on a short timescale, Razor schedules which requests to delay and by how much time to delay according to their delay tolerance. We implement a fully-functional prototype of Razor, and evaluate its performance with both real and synthetic traces. Extensive experimental results show that Razor can effectively help mobile application developers reduce their backend cost while guaranteeing the user experience.
机译:移动应用程序使用的急剧增长对应用程序开发人员来说,更大的压力,以更好地管理其后端容量。已经提出了基于规则的或基于时间表的自动缩放机制,但频繁调整后端容量以跟踪移动流量的突发是困难或昂贵的。在本文中,我们探讨了一个根本不同的方法。我们不与移动流量符合后端的后端,而是平滑流量配置文件以减少所需的后端容量并提高其利用率。我们所提出的解决方案称为剃刀,受到两个关键洞察的启发。首先,移动流量表现出高短期波动但长期趋势稳定,因此我们可以临时延迟用户请求并根据预测的业务量定期适应后端容量。其次,用户请求具有不同的优先级:虽然某些请求是紧急的(例如,发送消息),但是一些是延迟容忍(例如,改变配置文件照片),并且可以在对用户体验中没有太大影响时推迟。基于这些观察,我们的设计具有双层架构:在长时间的时间内,剃刀使用机器学习算法预测未来的流量,并计划最佳的后端能力以最小化性能保证的预算;在短时间,剃刀时间表,要求延迟以及根据其延迟公差延迟的时间。我们实施剃刀的全功能原型,并使用实际和合成迹线评估其性能。广泛的实验结果表明,剃刀可以有效地帮助移动应用程序开发人员在保证用户体验的同时降低其后端成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号