首页> 外文期刊>IEEE transactions on mobile computing >Maximum Likelihood Joint Angle and Delay Estimation from Multipath and Multicarrier Transmissions with Application to Indoor Localization over IEEE 802.11ac Radio
【24h】

Maximum Likelihood Joint Angle and Delay Estimation from Multipath and Multicarrier Transmissions with Application to Indoor Localization over IEEE 802.11ac Radio

机译:利用应用于IEEE 802.11ac无线电的多径和多载波传输的最大似然接头角度和延迟估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the problem of joint angle and delays estimation (JADE) of multiple reflections of a known signal impinging on multiple receiving antennae. Based on the importance sampling (IS) concept, we propose a new non-iterative maximum likelihood (ML) estimator that enjoys guaranteed global optimality and enhanced high-resolution capabilities for both single- and multi-carrier models. The new ML approach succeeds in transforming the original multi-dimensionaloptimization problem into multiple two-dimensional ones thereby resulting in huge computational savings. Moreover, it does not suffer from the off-grid problems that are inherent to most existing JADE techniques. By exploiting the sparsity feature of a carefully designed pseudo-pdf that is intrinsic to the new estimator, we also propose a novel approach that enables the accurate detection of the unknown number of paths over a wide range of practical signal-to-noise ratios (SNRs). Computer simulations show the distinct advantage of the new ML estimator over state-of-the art JADE techniques both in the single- and multi-carrier scenarios. Most remarkably, they suggest that the proposed IS-based ML JADE is statistically efficient as it almost reaches the Carver-Rao lower bound (CRLB) even in the adverse conditions of low SNR levels. Using real-world channel measurements collected from four access points (APs) with IEEE 802.11ac standard's setup parameters in an indoor environment, we also show that the proposed ML estimator achieves a localization performance below 15 cm accuracy.
机译:在本文中,我们解决了在多个接收天线上施加的已知信号的多反射的关节角度和延迟估计(玉)的问题。基于重要性采样(IS)概念,我们提出了一种新的非迭代最大可能性(ML)估算器,可以为单载体和多载波模型提供保证的全球最优性和增强的高分辨率功能。新的ML方法成功地将原始的多维光化问题转换为多个二维,从而导致巨大的计算储蓄。此外,它不会遭受大多数现有玉石技术所固有的漏洞问题。通过利用仔细设计的伪PDF的伪特征,该伪PDF是新估算器的内在估算器,我们还提出了一种新颖的方法,可以精确地检测到广泛的实际信号 - 噪声比上的未知路径数量( SNRS)。计算机模拟显示新的ML估计在单载波场景中的最先进的玉石技术中的明显优势。最重要的是,他们表明,即使在低SNR水平的不良条件下,所提出的基于基于的ML玉米也会略微高效,因为它几乎到达了Carver-Rao下限(CRLB)。使用从四个接入点(APS)收集的真实频道测量,使用IEEE 802.11AC标准的设置参数在室内环境中,我们还表明,所提出的ML估计器可以实现低于15厘米的定位性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号