首页> 外文期刊>IEEE transactions on mobile computing >Balancing Push and Pull for Efficient Information Discovery in Large-Scale Sensor Networks
【24h】

Balancing Push and Pull for Efficient Information Discovery in Large-Scale Sensor Networks

机译:平衡推和拉,在大型传感器网络中进行有效的信息发现

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate efficient strategies for supporting on-demand information dissemination and gathering in large-scale wireless sensor networks. In particular, we propose a "comb-needle" discovery support model resembling an ancient method: use a comb to help find a needle in sand or a haystack. The model combines push and pull for information dissemination and gathering. The push component features data duplication in a linear neighborhood of each node. The pull component features a dynamic formation of an on-demand routing structure resembling a comb. The comb-needle model enables us to investigate the cost of a spectrum of push and pull combinations for supporting query and discovery in large-scale sensor networks. Our result shows that the optimal routing structure depends on the frequency of query occurrence and the spatial-temporal frequency of related events in the network. The benefit of balancing push and pull for information discovery is demonstrated
机译:在本文中,我们研究了支持大规模无线传感器网络中按需信息分发和收集的有效策略。特别是,我们提出了一种类似于古老方法的“梳针”发现支持模型:使用梳子帮助在沙子或干草堆中找到针头。该模型将推和拉结合起来,用于信息传播和收集。推组件在每个节点的线性邻域中具有数据复制功能。拉动部件具有类似于梳子的按需布线结构的动态结构。梳针模型使我们能够研究一系列推拉组合的成本,以支持大规模传感器网络中的查询和发现。我们的结果表明,最佳路由结构取决于查询发生的频率以及网络中相关事件的时空频率。展示了为信息发现平衡推拉关系的好处

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号