首页> 外文期刊>IEEE transactions on mobile computing >Real-Time Crowd Monitoring Using Seamless Indoor-Outdoor Localization
【24h】

Real-Time Crowd Monitoring Using Seamless Indoor-Outdoor Localization

机译:使用室内外无缝定位进行实时人群监控

获取原文
获取原文并翻译 | 示例

摘要

Human identification and monitoring are critical in many applications, such as surveillance, evacuation planning. Human identification and monitoring are not an easy task in the case of a large and densely populated crowd. However, none of the existing solutions consider seamless localization, identification, and tracking of the crowd for surveillance in both indoor and outdoor environments with significant accuracy. In this paper, we propose a novel and real-time surveillance system (named, SmartISS) which identifies, tracks and monitors individuals' wireless equipment(s) using their MAC ids. Our trackers/sensing units (PSUs) are the portable entities comprising of Smartphone/Jetson-TK1/PC which are enough to capture users' devices probe requests and locations. PSUs upload collected traces on the cloud server periodically where cloud server keeps finding the suspicious person(s). To retrieve the updated information, we propose an algorithm (named, LLTR) to select the optimal number of PSUs for finding the latest location(s) of the suspicious person(s). To validate and to show the usability of SmartISS, we develop a real prototype testbed and evaluate it extensively on a real-world dataset of 117,121 traces collected during the technical festival held at IIT Roorkee, India. SmartISS selects PSUs with an average selection accuracy of 95.3 percent.
机译:人工识别和监视在许多应用中至关重要,例如监视,疏散计划。在人群众多且人口稠密的情况下,人工识别和监控并非易事。但是,现有解决方案均未考虑对人群进行无缝定位,识别和跟踪,以在室内和室外环境中以很高的精度进行监视。在本文中,我们提出了一种新颖的实时监视系统(名为SmartISS),该系统使用其MAC ID来识别,跟踪和监视个人的无线设备。我们的跟踪器/传感单元(PSU)是由Smartphone / Jetson-TK1 / PC组成的便携式实体,足以捕获用户设备的探测请求和位置。 PSU定期将收集的跟踪信息上传到云服务器,其中云服务器不断查找可疑人员。为了检索更新的信息,我们提出了一种算法(名为LLTR)来选择最佳PSU数量,以找到可疑人员的最新位置。为了验证并证明SmartISS的可用性,我们开发了一个真实的原型测试台,并在印度IIT Roorkee举行的技术节期间对117121条迹线的真实数据集进行了广泛评估。 SmartISS选择的PSU的平均选择精度为95.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号