首页> 外文期刊>IEEE transactions on mobile computing >A Signal-Level Transfer Learning Framework for Autonomous Reconfiguration of Wearable Systems
【24h】

A Signal-Level Transfer Learning Framework for Autonomous Reconfiguration of Wearable Systems

机译:用于可穿戴系统自主重配置的信号级传输学习框架

获取原文
获取原文并翻译 | 示例

摘要

Machine learning algorithms, which form the core intelligence of wearables, traditionally deduce a computational model from a set of training data to detect events of interest. However, in the dynamic environment in which wearables operate, the accuracy of a computational model drops whenever changes in configuration or context of the system occur. In this paper, using transfer learning as an organizing principle, we propose a novel design framework to enable autonomous reconfiguration of wearable systems. More specifically, we focus on the cases where the specifications of sensor(s) or the subject vary compared to what is available in the training data. We develop two new algorithms for data mapping (the mapping is between the training data and the data for the current operating setting). The first data mapping algorithm combines effective methods for finding signal similarity with network-based clustering, while the second algorithm is based on finding signal motifs. The data mapping algorithms constitute the centerpiece of the transfer learning phase in our framework. We demonstrate the efficacy of the data mapping algorithms using two publicly available datasets on human activity recognition. We show that the data mapping algorithms are up to two orders of magnitude faster compared to a brute-force approach. We also show that the proposed framework overall improves activity recognition accuracy by up to 15 percent for the first dataset and by up to 32 percent for the second dataset.
机译:机器学习算法构成了可穿戴设备的核心智能,传统上是从一组训练数据中推导出计算模型来检测感兴趣的事件。但是,在可穿戴设备运行的动态环境中,每当系统的配置或上下文发生更改时,计算模型的准确性就会下降。在本文中,使用转移学习作为组织原则,我们提出了一种新颖的设计框架,以实现可穿戴系统的自主重配置。更具体地说,我们着眼于传感器或对象的规格与训练数据中可用的规格相比有所不同的情况。我们开发了两种新的数据映射算法(映射是在训练数据和当前操作设置的数据之间)。第一种数据映射算法将有效的信号相似性查找方法与基于网络的聚类相结合,而第二种算法则基于查找信号图案。数据映射算法是我们框架中转移学习阶段的核心。我们演示了使用两个关于人类活动识别的公开可用数据集的数据映射算法的功效。我们证明,与暴力破解方法相比,数据映射算法的速度提高了两个数量级。我们还显示,提出的框架总体上将第一个数据集的活动识别准确度提高了15%,将第二个数据集的活动识别准确度提高了32%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号