首页> 外文期刊>Mobile Computing, IEEE Transactions on >Sensing Driver Phone Use with Acoustic Ranging through Car Speakers
【24h】

Sensing Driver Phone Use with Acoustic Ranging through Car Speakers

机译:通过汽车扬声器的声音测距来感应驾驶员电话的使用

获取原文
获取原文并翻译 | 示例

摘要

This work addresses the fundamental problem of distinguishing between a driver and passenger using a mobile phone, which is the critical input to enable numerous safety and interface enhancements. Our detection system leverages the existing car stereo infrastructure, in particular, the speakers and Bluetooth network. Our acoustic approach has the phone send a series of customized high frequency beeps via the car stereo. The beeps are spaced in time across the left, right, and if available, front and rear speakers. After sampling the beeps, we use a sequential change-point detection scheme to time their arrival, and then use a differential approach to estimate the phone's distance from the car's center. From these differences a passenger or driver classification can be made. To validate our approach, we experimented with two kinds of phones and in two different cars. We found that our customized beeps were imperceptible to most users, yet still playable and recordable in both cars. Our customized beeps were also robust to background sounds such as music and wind, and we found the signal processing did not require excessive computational resources. In spite of the cars' heavy multipath environment, our approach had a classification accuracy of over 90 percent, and around 95 percent with some calibrations. We also found, we have a low false positive rate, on the order of a few percent.
机译:这项工作解决了使用移动电话区分驾驶员和乘客的根本问题,这是实现众多安全性和界面增强功能的关键输入。我们的检测系统利用了现有的汽车立体声基础设施,尤其是扬声器和蓝牙网络。我们的声学方法是让电话通过汽车立体声发送一系列定制的高频蜂鸣声。蜂鸣器会在左右,左右(如果有)和前后扬声器之间按时间间隔排列。在对蜂鸣进行采样之后,我们使用顺序变化点检测方案对它们的到达时间进行计时,然后使用差分方法来估计电话与汽车中心的距离。根据这些差异,可以对乘客或驾驶员进行分类。为了验证我们的方法,我们尝试了两种手机以及两种不同的汽车。我们发现,大多数用户无法感知到我们定制的哔哔声,但在两辆车上仍然可以播放和录制。我们定制的蜂鸣声对于诸如音乐和风之类的背景声音也很健壮,并且我们发现信号处理不需要过多的计算资源。尽管汽车在多径环境中工作繁重,但我们的方法的分类精度仍超过90%,经过某些校准后,分类精度约为95%。我们还发现,误报率很低,大约只有几个百分点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号