首页> 外文期刊>Mobile Computing, IEEE Transactions on >Motivating Smartphone Collaboration in Data Acquisition and Distributed Computing
【24h】

Motivating Smartphone Collaboration in Data Acquisition and Distributed Computing

机译:促进智能手机在数据采集和分布式计算中的协作

获取原文
获取原文并翻译 | 示例

摘要

This paper analyzes and compares different incentive mechanisms for a master to motivate the collaboration of smartphone users on both data acquisition and distributed computing applications. To collect massive sensitive data from users, we propose a reward-based collaboration mechanism, where the master announces a total reward to be shared among collaborators, and the collaboration is successful if there are enough users wanting to collaborate. We show that if the master knows the users’ collaboration costs, then he can choose to involve only users with the lowest costs. However, without knowing users’ private information, then he needs to offer a larger total reward to attract enough collaborators. Users will benefit from knowing their costs before the data acquisition. Perhaps surprisingly, the master may benefit as the variance of users’ cost distribution increases. To utilize smartphones’ computation resources to solve complex computing problems, we study how the master can design an optimal contract by specifying different task-reward combinations for different user types. Under complete information, we show that the master involves a user type as long as the master’s preference characteristic outweighs that type’s unit cost. All collaborators achieve a zero payoff in this case. If the master does not know users’ private cost information, however, he will conservatively target at a smaller group of users with small costs, and has to give most benefits to the collaborators.
机译:本文分析并比较了大师的各种激励机制,以激发智能手机用户在数据采集和分布式计算应用程序上的协作。为了从用户那里收集大量敏感数据,我们提出了一种基于奖励的协作机制,该机制由主机宣布要在协作者之间共享的总奖励,并且如果有足够的用户想要协作,则协作成功。我们显示出,如果母版知道用户的协作成本,那么他可以选择仅让成本最低的用户参与。但是,在不知道用户的私人信息的情况下,他需要提供更大的总奖励以吸引足够的合作者。用户将受益于在获取数据之前了解其成本。也许令人惊讶的是,随着用户成本分布差异的增加,母版可能会受益。为了利用智能手机的计算资源来解决复杂的计算问题,我们研究了主人如何通过为不同的用户类型指定不同的任务-奖励组合来设计最佳合同。根据完整的信息,我们表明,只要母版的首选项特征超过该类型的单位成本,母版就涉及用户类型。在这种情况下,所有协作者都将获得零收益。但是,如果管理员不知道用户的私人成本信息,那么他将保守地针对成本较低的一小部分用户,并且必须给合作者带来最大的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号