首页> 外文期刊>IEEE transactions on mobile computing >Bayesian Mechanisms and Detection Methods for Wireless Network with Malicious Users
【24h】

Bayesian Mechanisms and Detection Methods for Wireless Network with Malicious Users

机译:恶意用户无线网络的贝叶斯机制和检测方法

获取原文
获取原文并翻译 | 示例

摘要

Strategic users in a wireless network cannot be assumed to follow the network algorithms blindly. Moreover, some of these users aim to use their knowledge about network algorithms to maliciously gain more resources and also to create interference to other users. We consider a scenario, in which the network and legitimate users gather probabilistic information about the presence of malicious users by observing the network over a long time period. The network (mechanism designer) and legitimate users modify their actions according to this Bayesian information. We consider Bayesian mechanisms, both pricing schemes and auctions, and obtain the Bayesian Nash Equilibrium (BNE) points. The BNE points provide conditions under which, the uncertainty about user's nature (type) is better for regular (legitimate) users. To derive these conditions, we compare the Bayesian case to the complete information case. We obtain the optimal prices and allocations, which counter the malicious users. We also provide detection methods based on machine learning algorithms for the detection of malicious users, by observing the prices and rate allocations. In addition, we provide detection using regression learning by observing the anomalies in the utility functions of malicious users from prices, which is implemented along with the pricing mechanism itself. For the designer and the regular users, in a complementary fashion, the results of the detections provide a better estimate of the statistics of malicious users to implement the pricing mechanisms. We have also proposed a truthful Bayesian mechanism in the presence of malicious users. The numerical studies for malicious user detection are carried out with the model proposed in the paper as well as using real Botnet dataset.
机译:不能假定无线网络中的战略用户盲目地遵循网络算法。此外,其中一些用户旨在利用他们对网络算法的了解来恶意获取更多资源,并造成对其他用户的干扰。我们考虑一种方案,其中网络和合法用户通过长时间观察网络来收集有关恶意用户存在的概率信息。网络(机制设计者)和合法用户会根据此贝叶斯信息修改其操作。我们考虑贝叶斯机制,包括定价方案和拍卖,并获得贝叶斯纳什均衡(BNE)点。 BNE点提供了一些条件,在这种条件下,对于常规(合法)用户,关于用户性质(类型)的不确定性更好。为了得出这些条件,我们将贝叶斯情况与完整信息情况进行比较。我们获得了最佳价格和配置,可以对付恶意用户。我们还通过观察价格和费率分配,提供了基于机器学习算法的检测方法,用于检测恶意用户。此外,我们通过从价格中观察恶意用户的效用函数中的异常情况,使用回归学习进行检测,这是与定价机制本身一起实现的。对于设计者和常规用户,以互补的方式,检测结果可以更好地估计恶意用户的统计信息,以实施定价机制。我们还提出了在存在恶意用户的情况下的真实贝叶斯机制。利用本文提出的模型以及使用真实的僵尸网络数据集进行了恶意用户检测的数值研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号