首页> 外文期刊>IEEE transactions on mobile computing >Multi-Story Indoor Floor Plan Reconstruction via Mobile Crowdsensing
【24h】

Multi-Story Indoor Floor Plan Reconstruction via Mobile Crowdsensing

机译:通过移动人群感知重建多层室内平面图

获取原文
获取原文并翻译 | 示例

摘要

The lack of floor plans is a critical reason behind the current sporadic availability of indoor localization service. Service providers have to go through effort-intensive and time-consuming business negotiations with building operators, or hire dedicated personnel to gather such data. In this paper, we propose Jigsaw, a floor plan reconstruction system that leverages crowdsensed data from mobile users. It extracts the position, size, and orientation information of individual landmark objects from images taken by users. It also obtains the spatial relation between adjacent landmark objects from inertial sensor data, then computes the coordinates and orientations of these objects on an initial floor plan. By combining user mobility traces and locations where images are taken, it produces complete floor plans with hallway connectivity, room sizes, and shapes. It also identifies different types of connection areas (e.g., escalators and stairs) between stories, and employs a refinement algorithm to correct detection errors. Our experiments on three stories of two large shopping malls show that the 90-percentile errors of positions and orientations of landmark objects are about and , while the hallway connectivity and connection areas between stories are 100 percent correct.
机译:缺乏平面图是当前室内本地化服务的零星供应的重要原因。服务提供商必须与建筑运营商进行费时费力的商务谈判,或雇用专门的人员来收集此类数据。在本文中,我们提出了Jigsaw,这是一种平面图重建系统,该系统利用了来自移动用户的众包数据。它从用户拍摄的图像中提取单个地标对象的位置,大小和方向信息。它还从惯性传感器数据获得相邻地标对象之间的空间关系,然后在初始平面图上计算这些对象的坐标和方向。通过结合用户移动轨迹和拍摄图像的位置,可以生成具有走廊连通性,房间大小和形状的完整平面图。它还可以识别故事之间的不同类型的连接区域(例如,自动扶梯和楼梯),并采用优化算法来纠正检测错误。我们对两个大型购物中心的三个楼层进行的实验表明,地标对象的位置和方向的90%误差约为和,而楼层之间的走廊连通性和连接区域正确率为100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号