首页> 外文期刊>Mobile Computing, IEEE Transactions on >Sextant: Towards Ubiquitous Indoor Localization Service by Photo-Taking of the Environment
【24h】

Sextant: Towards Ubiquitous Indoor Localization Service by Photo-Taking of the Environment

机译:Sextant:通过拍摄环境图像来实现无处不在的室内本地化服务

获取原文
获取原文并翻译 | 示例

摘要

Mainstream indoor localization technologies rely on RF signatures that require extensive human efforts to measure and periodically recalibrate signatures. The progress to ubiquitous localization remains slow. In this study, we explore Sextant, an alternative approach that leverages environmental reference objects such as store logos. A user uses a smartphone to obtain relative position measurements to such static reference objects for the system to triangulate the user location. Sextant leverages image matching algorithms to automatically identify the chosen reference objects by photo-taking, and we propose two methods to systematically address image matching mistakes that cause large localization errors. We formulate the benchmark image selection problem, prove its NP-completeness, and propose a heuristic algorithm to solve it. We also propose a couple of geographical constraints to further infer unknown reference objects. To enable fast deployment, we propose a lightweight site survey method for service providers to quickly estimate the coordinates of reference objects. Extensive experiments have shown that Sextant prototype achieves 2-5 m accuracy at 80-percentile, comparable to the industry state-of-the-art, while covering a mall and train station requires a one time investment of only 2-3 man-hours from service providers.
机译:主流的室内定位技术依赖于RF签名,这些签名需要大量的人力来测量和定期重新校准签名。普遍存在的本地化进展仍然缓慢。在本研究中,我们将探索Sextant,这是一种利用环境参考对象(例如商店徽标)的替代方法。用户使用智能手机来获得相对于此类静态参考对象的相对位置测量值,以供系统对用户位置进行三角测量。 Sextant利用图像匹配算法通过拍照自动识别所选参考对象,我们提出了两种方法来系统地解决引起较大定位误差的图像匹配错误。我们提出了基准图像选择问题,证明了它的NP完全性,并提出了一种启发式算法来解决。我们还提出了两个地理约束,以进一步推断未知参考对象。为了实现快速部署,我们为服务提供商提出了一种轻量级的站点调查方法,以快速估计参考对象的坐标。大量的实验表明,Sextant原型机在80%的精度下可达到2-5 m的精度,可与行业最先进的设备相媲美,而覆盖购物中心和火车站仅需2-3个工时的一次性投资来自服务提供商。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号