首页> 外文期刊>IEEE transactions on mobile computing >WiFall: Device-Free Fall Detection by Wireless Networks
【24h】

WiFall: Device-Free Fall Detection by Wireless Networks

机译:WiFall:无线网络进行的无设备跌倒检测

获取原文
获取原文并翻译 | 示例

摘要

Injuries that are caused by falls have been regarded as one of the major health threats to the independent living for the elderly. Conventional fall detection systems have various limitations. In this work, we first look for the correlations between different radio signal variations and activities by analyzing radio propagation model. Based on our observation, we propose WiFall, a truly unobtrusive fall detection system. WiFall employs physical layer Channel State Information (CSI) as the indicator of activities. It can detect fall of the human without hardware modification, extra environmental setup, or any wearable device. We implement WiFall on desktops equipped with commodity 802.11n NIC, and evaluate the performance in three typical indoor scenarios with several layouts of transmitter-receiver (Tx-Rx) links. In our area of interest, WiFall can achieve fall detection for a single person with high accuracy. As demonstrated by the experimental results, WiFall yields 90 percent detection precision with a false alarm rate of 15 percent on average using a one-class SVM classifier in all testing scenarios. It can also achieve average 94 percent fall detection precisions with 13 percent false alarm using Random Forest algorithm.
机译:跌倒造成的伤害被视为对老年人独立生活的主要健康威胁之一。常规的跌倒检测系统具有各种限制。在这项工作中,我们首先通过分析无线电传播模型来寻找不同无线电信号变化与活动之间的相关性。根据我们的观察,我们建议使用WiFall,这是一款真正的不引人注目的跌倒检测系统。 WiFall使用物理层的通道状态信息(CSI)作为活动指标。它无需硬件修改,无需额外的环境设置或任何可穿戴设备,即可检测到人的下落。我们在配备商用802.11n NIC的台式机上实施WiFall,并使用几种收发器(Tx-Rx)链路布局在三种典型的室内场景中评估性能。在我们感兴趣的领域,WiFall可以实现单人高准确度的跌倒检测。如实验结果所示,在所有测试方案中,使用一类SVM分类器,WiFall均可实现90%的检测精度和平均15%的误报率。使用随机森林算法还可以实现平均94%的跌倒检测精度和13%的误报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号