首页> 外文期刊>Mobile Computing, IEEE Transactions on >Identifying On-Site Users for Social Events: Mobility, Content, and Social Relationship
【24h】

Identifying On-Site Users for Social Events: Mobility, Content, and Social Relationship

机译:识别社交事件的现场用户:移动性,内容和社交关系

获取原文
获取原文并翻译 | 示例

摘要

The wide spread use of social network services, especially location based services, has transformed social networks into an important information source of real-world events. Many event detection systems using geo-tagged posts from social networks have been developed in recent years. Besides detecting real-world events, it is also desirable for government officials, news media, and police, etc., to identify on-site users of an event, from whom we could gather valuable information regarding the process of events and investigate suspects when an event is associated with crime or terrorist. However, due to the high uncertainty of human mobility patterns and the low probability of users sharing their location information, it is difficult to identify on-site users while a social event unfolds, and research work in this area is still in its infancy. In this paper, we propose a Fused fEature Gaussian prOcess Regression (FEGOR) model, which exploits three influential factors in social networks for on-site user identification: mobility influence, content similarity, and social relationship. By integrating these factors, we are able to estimate the distance between a user and a social event even when the user's location profile is unknown, thus identify on-site users. Experiments on a real-world Twitter dataset demonstrate the effectiveness of our model, achieving a minimum mean absolute error of 1.7km and outperforming state-of-the-art methods.
机译:社交网络服务(尤其是基于位置的服务)的广泛使用已将社交网络转变为现实事件的重要信息源。近年来,已经开发了许多使用来自社交网络的带有地理标签的帖子的事件检测系统。除了检测现实事件之外,还希望政府官员,新闻媒体和警察等识别事件的现场用户,我们可以从中收集有关事件过程的有价值的信息,并在事件发生时调查嫌疑人。事件与犯罪或恐怖分子有关。然而,由于人类出行方式的高度不确定性以及用户共享其位置信息的可能性较低,因此在社交事件发生时难以识别现场用户,并且该领域的研究工作仍处于起步阶段。在本文中,我们提出了融合特征高斯过程回归(FEGOR)模型,该模型利用社交网络中的三个影响因素进行现场用户识别:移动性影响,内容相似性和社会关系。通过整合这些因素,即使用户的位置资料未知,我们也能够估算用户与社交事件之间的距离,从而确定现场用户。在真实的Twitter数据集上进行的实验证明了我们模型的有效性,实现了1.7 km的最小平均绝对误差,并且性能优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号