首页> 外文期刊>Microprocessors and microsystems >Action recognition of dance video learning based on embedded system and computer vision image
【24h】

Action recognition of dance video learning based on embedded system and computer vision image

机译:基于嵌入式系统和计算机视觉图像的舞蹈视频学习行动认识

获取原文
获取原文并翻译 | 示例

摘要

Extraction and unfettered online / offline video sequence to identify complex human activity is computer vision a challenging task. To presents the classification of Indian classical dance moves using the powerful features of embedded system tools: Field Programmable Gate Array (FPGA). In this work, the Indian classical dance video for human action recognition is, YouTube data from offline and online control audio and video recordings of live performances carried out. Handprint create offline data with ten different themes familiar dance of 200 m / from various Indian classical dance forms in the context of a variety of poses. Online data collection dance ten different subjects from YouTube. Each dance posture is occupied 60 or video in both cases. FPGA training and 8 different sample dimensions, each performed by a plurality of sets of subject. The remaining two samples for testing the trained FPGA. Different FPGA architecture design, and with our test data in order to obtain better recognition accuracy. Compared the report on the same data set and other classification model to achieve a 90% recognition rate.
机译:提取和不受约束的在线/离线视频序列以识别复杂的人类活动是计算机愿景是一个具有挑战性的任务。展示印度古典舞蹈的分类,使用嵌入式系统工具的强大功能:现场可编程门阵列(FPGA)。在这项工作中,印度古典舞蹈视频是人类行动认可的是,来自离线和在线控制音频和实时表演的视频录制的YouTube数据。 Handprint在各种姿势的背景下创建了十个不同的主题熟悉的舞蹈,从各种印度古典舞蹈形式。在线数据收集舞蹈来自YouTube的十个不同的科目。在这两种情况下,每个舞蹈姿势都被占用60或视频。 FPGA训练和8个不同的样本尺寸,每个样品尺寸由多组对象进行。剩余的两个样品用于测试训练的FPGA。不同的FPGA架构设计,以及我们的测试数据,以获得更好的识别准确性。与同一数据集和其他分类模型的报告进行了比较,以达到90%的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号