首页> 外文期刊>Microprocessors and microsystems >Modified Binary Particle Swarm optimization algorithm application to real-time task assignment in heterogeneous multiprocessor
【24h】

Modified Binary Particle Swarm optimization algorithm application to real-time task assignment in heterogeneous multiprocessor

机译:改进的二进制粒子群算法在异构多处理器实时任务分配中的应用

获取原文
获取原文并翻译 | 示例

摘要

Task assignment in a heterogeneous multiprocessor is a NP-hard problem, so approximate methods are used to solve the problem. In this paper the Modified Binary Particle Swarm Optimization (Modified BPSO) algorithm and Novel Binary Particle Swarm (Novel BPSO) Optimization are applied to solve the real-time task assignment in heterogeneous multiprocessor. The problem consists of a set of independent periodic task, which has to be assigned to a heterogeneous multiprocessor without exceeding the utilization bound. The objective is to schedule maximum number of tasks with minimum energy consumption. The execution times and deadlines of the tasks are assumed to be known. Here Modified BPSO performance is compared with Novel BPSO and Ant Colony Optimization algorithm (ACO). Experimental results show that Modified BPSO performs better than Novel BPSO and ACO for consistent utilization matrix and ACO performs better than Modified BPSO and Novel BPSO for inconsistent utilization matrix.
机译:异构多处理器中的任务分配是一个NP难题,因此使用近似方法来解决该问题。本文采用改进的二元粒子群算法(Modified BPSO)算法和新型的二元粒子群算法(Novel BPSO)优化来解决异构多处理器中的实时任务分配问题。该问题由一组独立的周期性任务组成,必须将其分配给异构多处理器,而不会超出利用率范围。目的是在最少的能耗下安排最大数量的任务。假定任务的执行时间和截止日期是已知的。在这里,将修改后的BPSO性能与新型BPSO和蚁群优化算法(ACO)进行比较。实验结果表明,对于一致的利用率矩阵,改进的BPSO的性能优于新型BPSO和ACO,对于不一致的利用率矩阵,ACO的性能优于改进的BPSO和新型BPSO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号