首页> 外文期刊>Microprocessors and microsystems >GPU based real-time SLAM of six-legged robot
【24h】

GPU based real-time SLAM of six-legged robot

机译:基于GPU的六足机器人实时SLAM

获取原文
获取原文并翻译 | 示例

摘要

Vision and AHRS (attitude and heading reference system) sensors fusion strategy is prevalent in recent years for the legged robot's SLAM (Simultaneous Localization and Mapping), due to its low cost and effectiveness in the global positioning system. In this paper, a new adaptive estimation algorithm is proposed to achieve the robot SLAM by fusing binocular vision and AHRS sensors. A novel acceleration algorithm for SIFT implementation based on Compute Unified Device Architecture (CUDA) is presented to detect the matching feature points in 2D images. All the steps of SIFT were specifically distributed and implemented by CPU or GPU, according to the step's characteristics to make full use of computational resources. The registration of the 3D feature point cloud is performed by using the iterative closest point (ICP) algorithm. Our GPU-based SIFT implementation can run at the speed of 30 frames per second (fps) on most images with 900 x 750 resolution in the test. Compared to other methods, our algorithm is simple to implement and suitable for parallel processing. It can be easily integrated into mobile robot's tasks like navigation or object tracking, which need the real-time localization information. Experiments results showed that in the unknown indoor environments, the proposed algorithm's operation is stable and the positioning accuracy is high. (C) 2015 Elsevier B.V. All rights reserved.
机译:视觉和AHRS(姿态和航向参考系统)传感器融合策略近年来在腿式机器人的SLAM(同步定位和地图绘制)中非常流行,原因是它在全球定位系统中的成本较低且效率很高。本文提出了一种新的自适应估计算法,通过融合双目视觉和AHRS传感器来实现机器人SLAM。提出了一种基于计算统一设备架构(CUDA)的SIFT实现新的加速算法,以检测二维图像中的匹配特征点。 SIFT的所有步骤都是根据CPU或GPU的特点专门分配和实现的,以充分利用计算资源。 3D特征点云的注册是通过使用迭代最近点(ICP)算法执行的。我们的基于GPU的SIFT实现可以在测试中以900 x 750分辨率在大多数图像上以每秒30帧(fps)的速度运行。与其他方法相比,我们的算法易于实现,适合并行处理。它可以轻松地集成到需要实时定位信息的移动机器人任务中,例如导航或对象跟踪。实验结果表明,在未知的室内环境下,该算法运行稳定,定位精度高。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Microprocessors and microsystems》 |2016年第11期|104-111|共8页
  • 作者单位

    Harbin Inst Technol, State Key Lab Robot & Syst, 2 YiKuang St, Harbin, Heilongjiang Pr, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, 2 YiKuang St, Harbin, Heilongjiang Pr, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, 2 YiKuang St, Harbin, Heilongjiang Pr, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, 2 YiKuang St, Harbin, Heilongjiang Pr, Peoples R China;

    Harbin Inst Technol, Sch Mechatron Engn, 92 Xidazhi St, Harbin, Heilongjiang Pr, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature detection; Graphics processing unit (GPU); Parallel Processing; SLAM;

    机译:特征检测;图形处理单元(GPU);并行处理;SLAM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号