首页> 外文期刊>Microprocessors and microsystems >A comparison of heuristic algorithms for custom instruction selection
【24h】

A comparison of heuristic algorithms for custom instruction selection

机译:定制指令选择的启发式算法比较

获取原文
获取原文并翻译 | 示例

摘要

Extensible processors with custom function units (CFU) that implement parts of the application code can make good trade-off between performance and flexibility. In general, deciding profitable parts of the application source code that run on CFU involves two crucial steps: subgraph enumeration and subgraph selection. In this paper, we focus on the subgraph selection problem, which has been widely recognized as a computationally difficult problem. We have formally proved that the upper bound of the number of feasible solutions for the subgraph selection problem is 3(n/3), where n is the number of subgraph candidates. We have adapted and compared five popular heuristic algorithms: simulated annealing (SA), tabu search (TS), genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO), for the subgraph selection problem with the objective of minimising execution time under non-overlapping constraint and acyclicity constraint. The results show that the standard SA algorithm can produce the best results while taking the least amount of time among the five standard heuristics. In addition, we have introduced an adaptive local optimum searching strategy in ACO and PSO to further improve the quality of results. (C) 2016 Elsevier B.V. All rights reserved.
机译:具有实现部分应用程序代码的自定义功能单元(CFU)的可扩展处理器,可以在性能和灵活性之间做出很好的权衡。通常,确定在CFU上运行的应用程序源代码的有利部分涉及两个关键步骤:子图枚举和子图选择。在本文中,我们关注于子图选择问题,该问题已被广泛认为是计算难题。我们已经正式证明,子图选择问题的可行解数的上限是3(n / 3),其中n是子图候选数。对于具有目标的子图选择问题,我们针对五种流行的启发式算法进行了调整和比较:模拟退火(SA),禁忌搜索(TS),遗传算法(GA),粒子群优化(PSO)和蚁群优化(ACO)非重叠约束和非循环约束下的执行时间最小化。结果表明,在五种标准启发式算法中,标准SA算法可产生最佳结果,同时花费最少的时间。此外,我们在ACO和PSO中引入了自适应局部最优搜索策略,以进一步提高结果的质量。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号