首页> 外文期刊>IEEE Transactions on Computers >An FPGA Based Accelerator for Clustering Algorithms With Custom Instructions
【24h】

An FPGA Based Accelerator for Clustering Algorithms With Custom Instructions

机译:具有自定义指令的用于聚类算法的FPGA加速器

获取原文
获取原文并翻译 | 示例

摘要

Clustering algorithms are becoming popular and widely applied in many academic fields, such as machine learning, pattern recognition, and artificial intelligence. It has posed significant challenges to accelerate the algorithms due to the explosive data scale and wide variety of applications. However, previous studies mainly focus on the raw speedup with insufficient attention to the flexibility of the accelerator to support various applications. In order to accelerate different clustering algorithms in one accelerator, in this article, we design an accelerating framework based on FPGA for four state-of-the-art clustering methods, including K-means, PAM, SLINK, and DBSCAN algorithms. Moreover, we provide both euclidean and Manhattan distances as similarity metrics in the accelerator design paradigm. Moreover, we provide a custom instruction set to operate the accelerators within each application. In order to evaluate the performance and hardware cost of the accelerator, we constructed a hardware prototype on the state-of-the-art Xilinx FPGA platform. Experimental results demonstrate that the accelerator framework is able to achieve up to 23x speedup than Intel Xeon processor, and is 9.46x more energy efficient than NVIDIA GTX 750 GPU accelerators.
机译:聚类算法正变得流行,广泛应用于许多学术领域,例如机器学习,模式识别和人工智能。由于爆炸性数据量表和各种应用,它提出了显着的挑战来加速算法。然而,以前的研究主要关注原始加速,不足以关注加速器的灵活性,以支持各种应用。为了在一个加速器中加速不同的聚类算法,在本文中,我们设计了一种基于FPGA的加速框架,用于四种最先进的聚类方法,包括K-Means,Pam,Slink和DBSCAN算法。此外,我们为加速器设计范式的相似度量提供了欧几里德和曼哈顿距离。此外,我们提供了一个自定义指令集,以在每个应用程序中运行加速器。为了评估加速器的性能和硬件成本,我们在最先进的Xilinx FPGA平台上构建了硬件原型。实验结果表明,加速器框架能够比英特尔Xeon处理器达到高达23倍的加速,比NVIDIA GTX 750 GPU加速器更高的节能9.46倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号