首页> 外文期刊>Microprocessors and microsystems >Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features
【24h】

Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features

机译:具有减少的EEG功能的基于单通道的自动睡意检测架构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents efficient EEG system for drowsiness detection. The proposed system is able to provide stable performances regardless their intrinsic features of drivers and is suitable for embedded implementation. This approach is based on spectral analysis where a new set of features is extracted from an electroencephalography (EEG) recording based on the analysis of sub-bands of 1 Hz. In this work, the alpha sub-band is represented by only one frequency, i.e., the individual alpha frequency, instead of using the entire sub-band from 8 to 12 Hz. The use of this frequency as a representative feature helps to overcome the problem of interpersonal variability between different persons. Furthermore, we have reduced the EEG feature size while maintaining the accuracy at its highest level. By combining the reduction in the number of features with the use of only one differential EEG channel, we have succeeded in developing a more suitable system with good accuracy. In order to verify the performance of our approach, the proposed EEG-based signal processing technique was simulated and tested under Matlab using an existing offline database (MIT-BIH Polysomnographic Database Physiobank); consequently, it provides better drowsiness detection performance than similar published works with an average accuracy of approximately 88.80%. Furthermore, we have implemented our proposed architecture in an ARM based processor platform to complete our virtual prototyping and to get a real evaluation of our drowsiness system architecture. Such system is able to process an epoch of 30 s within 0.2 s. The proposed approach should be easily and efficiently handled by a driver to be warned against any risk from potential drowsiness in real-time. Obtained results show that the proposed system provides a short processing time while maintaining a high performance in term of classification accuracy.
机译:本文提出了一种用于睡意检测的高效脑电图系统。所提出的系统能够提供稳定的性能,而不管其驱动程序的固有特性如何,并且适用于嵌入式实现。此方法基于频谱分析,其中基于1 Hz子带的分析,从脑电图(EEG)记录中提取一组新的特征。在这项工作中,阿尔法子带仅由一个频率表示,即单独的阿尔法频率,而不是使用从8到12 Hz的整个子带。使用该频率作为代表特征有助于克服不同人之间的人际变异性问题。此外,我们减小了EEG功能的大小,同时将精度保持在最高水平。通过减少特征数量与仅使用一个差分EEG通道相结合,我们成功地开发了一种更合适且精度更高的系统。为了验证我们方法的性能,在Matlab上使用现有的离线数据库(MIT-BIH多导睡眠图数据库Physiobank)对拟议的基于EEG的信号处理技术进行了仿真和测试。因此,与其他已发表的作品相比,它提供的睡意检测性能更好,平均准确率约为88.80%。此外,我们已经在基于ARM的处理器平台中实现了我们提出的架构,以完成我们的虚拟原型设计并获得对我们的睡意系统架构的真实评估。这样的系统能够在0.2秒内处理30秒。所建议的方法应由驾驶员轻松有效地处理,并实时警告其潜在的嗜睡风险。所得结果表明,所提出的系统提供了较短的处理时间,同时在分类精度方面保持了高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号