首页> 外文期刊>Microelectronics & Reliability >Size and constraint effects on interfacial fracture behavior of microscale solder interconnects
【24h】

Size and constraint effects on interfacial fracture behavior of microscale solder interconnects

机译:尺寸和约束对微尺度焊料互连的界面断裂行为的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The fracture behavior of solder joints has long been an important issue in the reliability evaluation of electronic components and packages. In this study, experimental and finite element methods were used to characterize the interfacial fracture behavior of "Cu-wire/solder/Cu-wire" sandwich-structured micro-scale Sn-3.0Ag-0.5Cu solder joints with different diameters (100-575 μm) and thicknesses (35-325 urn) under quasi-static micro-tension loading, with systematic comparison to Sn-37Pb solder joints. Dynamic stress intensity factors for the microcracks in Cu, Sn-3.0Ag-0.5Cu, and Sn-37Pb under pulse tensile loading and high speed propagation were calculated. The numerical simulation results showed that the interface stress intensity factors K_Ⅱ and K_Ⅰ for the crack set at the solder/IMC interface increased with increasing the thickness of the joints from 35 nm to ~125 um, and thereafter decreased and then became stable. With increasing the diameter of the joints, basically K_Ⅰ increases while K_Ⅱ decreases Under the quasi-static micro-tension loading, the crack driving forces in Sn-3.0Ag-0.5Cu solder joints are lower than that in Sn-37Pb joints, and this means that fracture is less likely to occur in Sn-3.0Ag-0.5Cu solder joints than in Sn-joints. The rapid expansion of a high hydrostatic pressure region may enhance the mechanical performance of interconnects when the diameter-to-thickness ratios of the joints are very large. As the diameter of the solder joints increases, the evolution of the energy release distribution results in a change of the fracture position and mechanism in the interconnects. Compared to Sn-37Pb solder, the Sn-3.0Ag-0.5Cu lead-free solder shows a lower resistance to rapid crack propagation under constant tensile loading.
机译:长期以来,焊点的断裂行为一直是电子元件和封装可靠性评估中的重要问题。在这项研究中,实验和有限元方法被用来表征“铜线/焊料/铜线”夹层结构的不同直径的Sn-3.0Ag-0.5Cu微型焊点的界面断裂行为(100- 575μm)和厚度(35-325 um)在准静态微张力载荷下进行,并与Sn-37Pb焊点进行系统比较。计算了Cu,Sn-3.0Ag-0.5Cu和Sn-37Pb在脉冲拉伸载荷和高速传播下的微裂纹的动态应力强度因子。数值模拟结果表明,随着接头厚度从35 nm增加到〜125 um,焊料/ IMC界面处裂纹的界面应力强度因子K_Ⅱ和K_Ⅰ增大,然后减小,然后趋于稳定。随着接头直径的增加,在准静态微张力载荷作用下,Sn-3.0Ag-0.5Cu焊点的裂纹驱动力基本低于Sn-37Pb接头,而K_Ⅰ增大而K_Ⅱ减小。这意味着与锡接头相比,Sn-3.0Ag-0.5Cu焊点更不可能发生断裂。当接头的直径与厚度之比非常大时,高静水压力区域的快速膨胀可以增强互连的机械性能。随着焊点直径的增加,能量释放分布的演变导致互连中断裂位置和机制的变化。与Sn-37Pb焊料相比,Sn-3.0Ag-0.5Cu无铅焊料在恒定拉伸载荷下显示出较低的抗快速裂纹扩展的能力。

著录项

  • 来源
    《Microelectronics & Reliability》 |2013年第1期|154-163|共10页
  • 作者单位

    School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;

    School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;

    School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;

    School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;

    Electronks Engineering, City University of Hong Kong, and CALCE Electronic Products &Systems Center, University of Maryland, MD 20742-9121, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号