首页> 外文期刊>Microelectronics & Reliability >Thermal reliability prediction and analysis for high-density electronic systems based on the Markov process
【24h】

Thermal reliability prediction and analysis for high-density electronic systems based on the Markov process

机译:基于马尔可夫过程的高密度电子系统热可靠性预测与分析

获取原文
获取原文并翻译 | 示例

摘要

Thermal-mechanical fatigue is one of the main failure modes for electronic systems, particularly for high-density electronic systems with high-power components. Thermal reliability estimation and prediction have been an increasing concern for improving the safety and reliability of electronic systems. In this paper, we propose a stochastic process prediction model to estimate the thermal reliability of an electronic system based on Markov theory. We first divided the high-density electronic systems into four modules: the energy transformation and protection module, the electronic control module, the connection module, and the signal transmission and transformation module. By integrating failure and repair characteristics of the four modules, a stochastic model of thermal reliability analysis and prediction for a whole electronic system was built based on the Markov process. The feature parameters of thermal reliability evaluation, including thermal reliability, thermal failure probability, mean time between thermal faults, and thermal stable availability, were derived based on our comprehensive model. Finally, we applied the model to an indoor electronic system of DC frequency conversion conditioning. The thermal reliability was estimated and predicted using tested failure and debugging repair data. Effective methods for improving thermal reliability are presented and analyzed based on the comprehensive Markov model. (C) 2015 Elsevier Ltd. All rights reserved.
机译:热机械疲劳是电子系统的主要故障模式之一,特别是对于具有高功率组件的高密度电子系统。对于提高电子系统的安全性和可靠性,热可靠性估计和预测已成为越来越多的关注。在本文中,我们提出了一种基于马尔可夫理论的随机过程预测模型来估计电子系统的热可靠性。首先,我们将高密度电子系统分为四个模块:能量转换和保护模块,电子控制模块,连接模块以及信号传输和转换模块。通过整合四个模块的故障和修复特性,基于马尔可夫过程建立了整个电子系统热可靠性分析和预测的随机模型。基于我们的综合模型,得出了热可靠性评估的特征参数,包括热可靠性,热故障概率,热故障之间的平均时间以及热稳定性。最后,我们将该模型应用于直流变频调理的室内电子系统。使用经过测试的故障和调试维修数据可以估算和预测热可靠性。在综合马尔可夫模型的基础上,提出并分析了提高热可靠性的有效方法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号