首页> 外文期刊>Microelectronics & Reliability >Phase field simulation of microstructural evolution and thermomigration-induced phase segregation in Cu/Sn58Bi/Cu interconnects under isothermal aging and temperature gradient
【24h】

Phase field simulation of microstructural evolution and thermomigration-induced phase segregation in Cu/Sn58Bi/Cu interconnects under isothermal aging and temperature gradient

机译:等温时效和温度梯度下Cu / Sn58Bi / Cu互连微结构演变和热迁移诱导的相分离的相场模拟

获取原文
获取原文并翻译 | 示例

摘要

Sn-Bi based alloys are widely used as thermal interfacial materials, solders in electronic packaging, thermal fuse and low temperature resistant performance electronic components. However, the inherent tendency of microstructure coarsening and phase segregation in Sn-Bi alloys under thermal loading can easily lead to the in homogeneous mechanical and thermal response behavior, which can promote crack initiation and expansion near the interface between two major phases (i.e., Bi-rich and Sn-rich phases), and this has brought about serious reliability concern for the above applications and thus attracted increasing attention in recent years. In this study, a phase field model is developed to simulate the microstructural evolution and phase segregation behavior of the eutectic Sn58Bi solder in a line-type Cu/Sn58Bi/Cu interconnect under the condition of isothermal aging and temperature gradient respectively. Results show that the Bi-rich phase and Sn-rich phase distribute in homogeneously in the Sn58Bi alloy matrix of the solder interconnect during thermal aging; the large size Bi-rich phase particles grow up at the expense of the small size ones, and the value of coarsening exponent is is 0.17. Under temperature gradient, Bi atoms migrate along the direction of the heat flux, and consequently a Bi-rich phase segregation layer forms on the cold end, while a Sn-rich phase area is left on the hot end. The relationship between the temperature gradient distribution and the microstructural characteristics is well revealed. Moreover, the phase segregation under temperature gradient induces the decrease of thermal conductivity, which in turn deteriorates the heat transfer performance of solder interconnects. In addition, comparing the coarsening behavior of the Bi-rich phase under temperature gradient with that during isothermal aging, it is clear that the temperature gradient leads to faster coarsening of the Bi-rich phase, and there is a linear relationship between the mean equivalent radius of the Bi-rich phase and nondimensional time. Finally, the study of thermomigration kinetics of the Bi-rich phase shows that the thickness of the Bi-rich phase segregation layer increases almost linearly with nondimensional time, which is consistent with the theoretical analysis.
机译:Sn-Bi基合金广泛用作热界面材料,电子封装中的焊料,热熔丝和耐低温性能的电子元件。但是,Sn-Bi合金在热负荷下的微观组织粗化和相偏析的内在趋势很容易导致均一的力学和热响应行为,从而促进裂纹萌生和在两个主要相(即Bi)之间的界面附近扩展。富相和富锡相),这已经引起了上述应用的严重可靠性问题,因此近年来引起了越来越多的关注。在这项研究中,建立了一个相场模型来模拟分别在等温老化和温度梯度条件下,线型Cu / Sn58Bi / Cu互连物中共晶Sn58Bi焊料的微观结构演变和相偏析行为。结果表明,在热时效过程中,富Bi相和富Sn相均匀分布在焊料互连的Sn58Bi合金基体中。大尺寸的富Bi相粒子以小尺寸的相长而长大,粗化指数值为0.17。在温度梯度下,Bi原子沿热通量方向迁移,因此在冷端形成了富Bi的相偏析层,而在热端留下了富Sn的相区域。很好地揭示了温度梯度分布与微观结构特征之间的关系。而且,在温度梯度下的相分离引起导热率的降低,这又使焊料互连的传热性能恶化。另外,通过比较温度梯度下的Bi-富集相的粗化行为与等温时效过程中的粗化行为,可以清楚地看出,温度梯度导致Bi-富集相的粗化速度更快,并且平均当量之间存在线性关系。富Bi相的半径和无量纲时间。最后,富Bi相热迁移动力学研究表明,富Bi相偏析层的厚度几乎随无量纲时间线性增长,这与理论分析是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号