...
首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner
【24h】

Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner

机译:三轴串行运动高带宽纳米定位器的设计与控制

获取原文
获取原文并翻译 | 示例
           

摘要

The development of a high-performance three-axis serial-kinematic nanopositioning stage is presented. The stage is designed for high-bandwidth applications that include video-rate scanning probe microscopy and high-throughput probe-based nanofabrication. Specifically, the positioner employs vertically stiff, double-hinged serial flexures for guiding the motion of the sample platform to minimize parasitic motion (runout) and off-axis effects compared to previous designs. Finite element analysis (FEA) predicts the dominant resonances along the fast ( $x$-axis) and slow ($y$ -axis) scanning axes at 25.9 and 6.0 kHz, respectively. The measured dominant resonances of the prototype stage in the fast and slow scanning directions are 24.2 and 6.0 kHz, respectively, which are in good agreement with the FEA predictions. In the $z$-direction, the measured dominant resonance is approximately 70 kHz. The lateral and vertical positioning ranges are approximately 9  $mu$m $times$  9 $mu$m and 1 $mu$m, respectively. Four approaches to control the lateral motion of the stage are evaluated for precision tracking at high-scan rates: 1) open-loop smooth inputs; 2) PID feedback; 3) discrete-time repetitive control implemented using field-programmable gate array (FPGA) hardware; and 4) model-based feedforwardcontrol. The stage is integrated with a commercial scan-by-probe atomic force microscope (AFM) and imaging and tracking results up to a line rate of 7 kHz are presented. At this line rate, 70 frames/s-natomic force microscope video (100 $times$ 100 pixels resolution) can be achieved.
机译:介绍了高性能三轴串联运动纳米定位平台的开发。该平台专为高带宽应用而设计,包括视频速率扫描探针显微镜和基于高通量探针的纳米加工。具体地说,与以前的设计相比,该定位器采用了垂直刚性的双铰接系列挠曲件来引导样品平台的运动,以最大程度地减少寄生运动(跳动)和离轴效应。有限元分析(FEA)分别预测了沿快速($ x $轴)和慢速($ y $轴)扫描轴在25.9和6.0 kHz处的主要共振。原型阶段在快扫描和慢扫描方向上测得的主共振分别为24.2和6.0 kHz,这与FEA预测非常吻合。在$ z $方向上,测得的主共振约为70 kHz。横向和垂直定位范围分别约为9μm×9μm和1μm。评估了用于控制平台横向运动的四种方法,以便在高扫描速率下进行精确跟踪:1)开环平滑输入; 2)PID反馈; 3)使用现场可编程门阵列(FPGA)硬件实现的离散时间重复控制;和4)基于模型的前馈控制。该载物台与商用探针原子力显微镜(AFM)集成在一起,并提出了高达7 kHz的线速成像和跟踪结果。以这种线速,可以实现70帧/ s原子力显微镜视频(100 x 100像素分辨率)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号