首页> 外文期刊>Mechanical systems and signal processing >Fault diagnosis using support vector machine with an application in sheet metal stamping operations
【24h】

Fault diagnosis using support vector machine with an application in sheet metal stamping operations

机译:支持向量机的故障诊断及其在钣金冲压中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for fault diagnosis using a newly developed method, support vector machine (SVM). First, the basic theory of the SVM is briefly reviewed. Next, a fast implementation algorithm is given. Then the method is applied for the fault diagnosis in sheet metal stamping processes. According to the tests on two different examples, one is a simple blanking and the other is a progressive operation, the new method is very effective. In both cases, its success rate is over 96.5%. In comparison, the success rate of the popular artificial neural network (ANN) is just 93.3%. In addition, the new method requires only few training samples, which is an attractive feature for shop floor applications.
机译:本文提出了一种使用新开发的支持向量机(SVM)方法进行故障诊断的新方法。首先,简要回顾了SVM的基本理论。接下来,给出了一种快速实现算法。然后将该方法用于钣金冲压过程中的故障诊断。根据对两个不同示例的测试,一种是简单的消隐,另一种是渐进操作,该新方法非常有效。在这两种情况下,其成功率均超过96.5%。相比之下,流行的人工神经网络(ANN)的成功率仅为93.3%。此外,新方法只需要很少的训练样本,这对于车间应用是一个有吸引力的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号