首页> 外文期刊>Mechanical systems and signal processing >A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
【24h】

A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing

机译:改进的希尔伯特-黄变换和小波变换的比较研究:在滚动轴承故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

For rolling bearing fault detection, it is expected that a desired time-frequency analysis method should have good computation efficiency, and have good resolution in both time domain and frequency domain. As the best available time-frequency method so far, the wavelet transform still cannot fulfill the rolling bearing fault detection task very well since it has some inevitable deficiencies. The recent popular time-frequency analysis method, Hilbert-Huang transform (HHT), has good computation efficiency and does not involve the concept of the frequency resolution and the time resolution. So the HHT seems to have potential to become a perfect too! for rolling bearing fault detection. However, in practical applications, the HHT also suffers from some unsolved deficiencies. To ameliorate these deficiencies, by seeking help from the wavelet packet transform (WPT) and a simple but effective method for intrinsic mode function (IMF) selection, an improved HHT is put forward in this studying. Several numerical study cases will be used to validate the capabilities of the improved HHT. Finally, the improved HHT's performance in rolling bearing fault detection is compared with that of the wavelet based scalogram through experimental case studies. The comparison results have shown that (1) the improved HHT has better resolution both in time domain and in frequency domain than the scalogram; (2) the improved HHT has better computing efficiency than scalogram; (3) the HHT spectrum also has one unresolved and maybe inevitable deficiency ― ripple phenomenon in its estimated frequency, which would mislead our analysis.
机译:对于滚动轴承故障检测,期望期望的时频分析方法应具有良好的计算效率,并且在时域和频域均具有良好的分辨率。小波变换作为迄今为止最好的时频方法,由于其不可避免的缺陷,仍然不能很好地完成滚动轴承故障检测任务。最近流行的时频分析方法Hilbert-Huang变换(HHT)具有良好的计算效率,并且没有涉及频率分辨率和时间分辨率的概念。因此,HHT似乎也有可能成为完美!用于滚动轴承故障检测。然而,在实际应用中,HHT还存在一些未解决的缺陷。为了克服这些缺陷,通过寻求小波包变换(WPT)的帮助以及一种简单但有效的内在模式函数(IMF)选择方法,本研究提出了一种改进的HHT。几个数值研究案例将用于验证改进的HHT的功能。最后,通过实验案例研究,将改进的HHT在滚动轴承故障检测中的性能与基于小波的比例尺进行了比较。比较结果表明:(1)改进后的HHT在时域和频域上均具有比比例尺更好的分辨率; (2)改进后的HHT的计算效率比比例尺好。 (3)HHT频谱在其估计频率上也有一个未解决的,也许是不可避免的缺陷-波纹现象,这会误导我们的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号