首页> 外文期刊>Mechanical systems and signal processing >Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery
【24h】

Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery

机译:基于隐马尔可夫模型的旋转机械加速和减速过程故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

It is very important to ensure that the large rotating machinery operates safely and reliably. The behaviour characteristics of the speed-up and speed-down process in a rotating machinery possess the distinct diagnostic value. The abundant information, non-stationarity, poor repeatability and reproduci-bility in the speed-up and speed-down process lead to the necessity to find the corresponding approach of feature extraction and fault recognition. The Hidden Markov model (HMM) is very suitable for modelling the dynamic time series, and has a strong capability of pattern classification, especially for a signal with abundant information, non-stationarity, poor repeatability and reproducibility. At the same time, HMM can process the random long sequences in theory. Based on these features, HMM is very suitable for the signal from the speed-up and speed-down process in rotating machinery. As a result, HMM is introduced to the fault diagnosis of rotating machinery, and a new HMM-based approach of the fault diagnosis for the speed-up and speed-down process is proposed. The main idea of the proposed approach is that the feature vectors, which are obtained by the FFT, wavelet transform, bispectrum, etc., are used as fault features, respectively, and the HMMs as the classifiers to recognise the faults of the speed-up and speed-down process in rotating machinery. The experimental results show that the proposed approach is feasible and effective.
机译:确保大型旋转机械安全可靠地运行非常重要。旋转机械中加速和减速过程的行为特征具有独特的诊断价值。在加速和减速过程中,信息量丰富,不稳定,重复性和可重复性差,因此有必要找到相应的特征提取和故障识别方法。隐马尔可夫模型(HMM)非常适合对动态时间序列建模,并且具有强大的模式分类能力,特别是对于信息量大,不平稳,可重复性和再现性差的信号。同时,HMM理论上可以处理随机长序列。基于这些特性,HMM非常适合旋转机械中加速和减速过程的信号。因此,将HMM引入旋转机械的故障诊断中,提出了一种基于HMM的新的加速和减速过程故障诊断方法。提出的方法的主要思想是将通过FFT,小波变换,双谱等获得的特征向量分别用作故障特征,并将HMM作为分类器来识别速度故障。旋转机械的加速和减速过程。实验结果表明,该方法是可行和有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号