首页> 外文期刊>Mechanical systems and signal processing >Support vector machine in machine condition monitoring and fault diagnosis
【24h】

Support vector machine in machine condition monitoring and fault diagnosis

机译:支持向量机在机器状态监测与故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.
机译:最近,由于维护成本降低,生产率提高和机器可用性提高而具有潜在的优势,因此作为维护系统一部分的机器状态监视和故障诊断问题已成为全球性问题。本文介绍了使用支持向量机(SVM)进行的机器状态监视和故障诊断的概况。它试图总结和回顾SVM在机器状态监测和诊断中的最新研究和发展。已经基于智能系统开发了许多方法,例如人工神经网络,模糊专家系统,基于条件的推理,随机森林等。但是,将SVM用于机器状态监测和故障诊断的情况仍然很少。 SVM具有出色的泛化性能,因此可以为机器状态监视和诊断提供较高的分类精度。直到2006年,支持向量机在机器状态监测和故障诊断中的应用趋向于面向专业知识和面向问题的领域。最后,不断变化并获得使用SVM进行机器状态监测和故障诊断的新思路的能力将是未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号