首页> 外文期刊>Mechanical systems and signal processing >Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques
【24h】

Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques

机译:结合信号处理技术,基于切削力的端面铣削中刀具磨损的实时估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, combinations of signal processing techniques for real-time estimation of tool wear in face milling using cutting force signals are presented. Three different strategies based on linear filtering, time-domain averaging and wavelet transformation techniques are adopted for extracting relevant features from the measured signals. Sensor fusion at feature level is used in search of an improved and robust tool wear model. Isotonic regression and exponential smoothing techniques are introduced to enforce monotonicity and smoothness of the extracted features. At the first stage, multiple linear regression models are developed for specific cutting conditions using the extracted features. The best features are identified on the basis of a statistical model selection criterion. At the second stage, the first-stage models are combined, in accordance with proven theory, into a single tool wear model, including the effect of cutting parameters. The three chosen strategies show improvements over those reported in the literature, in the case of training data as well as test data used for validation—for both laboratory and industrial experiments. A method for calculating the probabilistic worst-case prediction of tool wear is also developed for the final tool wear model.
机译:在本文中,提出了使用切削力信号实时估计端面铣削刀具磨损的信号处理技术组合。采用三种基于线性滤波,时域平均和小波变换技术的策略从测量信号中提取相关特征。在功能级别上进行传感器融合可用于寻找一种改进且坚固的工具磨损模型。引入等渗回归和指数平滑技术以增强提取特征的单调性和平滑性。在第一阶段,使用提取的特征针对特定的切削条件开发了多个线性回归模型。根据统计模型选择标准来确定最佳功能。在第二阶段,根据经过验证的理论,将第一阶段模型组合为单个刀具磨损模型,其中包括切削参数的影响。在训练数据以及用于验证的测试数据(用于实验室和工业实验)的情况下,三种选择的策略均显示出比文献报道的策略有所改进。还为最终刀具磨损模型开发了一种计算刀具磨损概率最坏情况预测的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号