首页> 外文期刊>Mechanical systems and signal processing >Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage
【24h】

Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

机译:齿弯曲疲劳损伤引起的塑性变形齿轮齿的静传递误差振动激励贡献

获取原文
获取原文并翻译 | 示例

摘要

To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Q{sub}t = 1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Q{sub}a = 1.2 to Q{sub}a = 3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.
机译:为了评估齿轮的健康状况并检测齿轮的损坏,啮合齿轮副激励产生的振动响应通常由加速度计进行监控。在较早的论文中,有力的证据表明,在牙齿弯曲疲劳损伤的情况下,可检测到的损伤的主要来源是整齿的塑性变形。即屈服,而不是由齿根裂纹引起的牙齿刚度变化。这种塑性变形是由啮合齿轮对引起的“静传递误差”(STE)振动激励的几何偏差贡献。推导了由单个牙齿上这种塑性变形的两种可能发生形式引起的STE贡献,并在时域中显示了渐开线“滚动距离”的函数。提供了针对Q {sub} t = 1.4和1.8的横向接触比,正齿轮和Q {sub} a = 1.2到Q {sub} a = 3.6的斜齿轮轴向接触比的示例计算。这些相同的STE贡献的低通和带通滤波版本也会在时域中计算和显示。包括计算出的STE啮合啮合基本谐波贡献和由塑性变形的牙齿引起的带通STE贡献的叠加在内的数种计算,表现出在损坏的牙齿引起的加速度计响应波形中通常观察到的幅度和频率或相位调制特性。提供了通用公式,这些公式可以计算出任何正齿轮和斜齿轮的任意接触比下,任意数量的齿上任何形式的塑性变形所产生的这些STE振动激励贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号