首页> 外文期刊>Mechanical systems and signal processing >Model order determination and noise removal for modal parameter estimation
【24h】

Model order determination and noise removal for modal parameter estimation

机译:模态参数估计的模型阶数确定和噪声去除

获取原文
获取原文并翻译 | 示例

摘要

Given a noisy impulsive response function (IRF) that has been contributed by an unknown number of modes, this article proposes a different approach from the traditional methods for estimating modal parameters from this noisy IRF. The major difference lies in the way of handling noise and choosing the computational model order. Whereas the traditional approach accommodates noise by purposely increasing the computational model order, the proposed approach uses the actual system order as the computational model order and rejects noise prior to performing the modal parameter estimation. The proposed approach includes three steps: (1) model order (or number of modes) determination from the measured IRF-by finding the rank of a Hankel matrix constructed from the measured IRF, (2) noise removal from the measured IRF to obtain a filtered IRf-by implementing Cadzow's algorithm for the structured low rank approximation (SLRA) on the Hankel matrix, and (3) modal parameters estimation from the filtered IRF-by using the complex exponential method (Prony's method). Numerical studies include both synthesized and experimental data. While measured IRFs with mild and strong noise levels are simulated for a 5 degree-of-freedom mass-spring-dashpot system, the modal parameter estimations based on the filtered IRFs are very good for both noise levels. While experimental data are measured from two accelerometers mounted at a cantilever beam, the modal parameters estimated from the filtered IRFs of the two accelerometers are in excellent agreement.
机译:鉴于存在未知数量的模态而产生的噪声冲激响应函数(IRF),本文提出了一种与传统方法不同的方法,该方法可从该噪声IRF估算模态参数。主要区别在于处理噪声和选择计算模型顺序的方式。传统的方法通过有意增加计算模型的阶数来容纳噪声,而提出的方法则使用实际的系统阶数作为计算模型的阶数,并在执行模态参数估计之前抑制噪声。所提出的方法包括三个步骤:(1)根据测得的IRF确定模型阶数(或模数)-通过找到由测得的IRF构造的汉克矩阵的秩,(2)从测得的IRF中去除噪声以获得噪声。通过对汉克矩阵实施结构化的低秩近似(SLRA)的Cadzow算法实现滤波后的IRf,以及(3)使用复指数方法(Prony方法)从滤波后的IRF中进行模态参数估计。数值研究包括合成和实验数据。虽然针对5自由度质量弹簧阻尼器系统模拟了具有轻度和强噪声水平的IRF,但基于滤波后的IRF的模态参数估计对于两种噪声水平都非常好。从安装在悬臂梁上的两个加速度计测量实验数据的同时,从两个加速度计的滤波后IRF估计的模态参数非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号