首页> 外文期刊>Mechanical systems and signal processing >Multivariate and multiscale monitoring of large-size low-speed bearings using Ensemble Empirical Mode Decomposition method combined with Principal Component Analysis
【24h】

Multivariate and multiscale monitoring of large-size low-speed bearings using Ensemble Empirical Mode Decomposition method combined with Principal Component Analysis

机译:集成经验模式分解与主成分分析相结合的大型低速轴承多变量多尺度监测

获取原文
获取原文并翻译 | 示例

摘要

With a view to detecting incipient failures in large-size low-speed rolling bearings and ensuring minimal effect of subjectivity on the process, a new data-driven multivariate and multiscale statistical monitoring method is proposed. The proposed method which combines the Principal Component Analysis (PCA) multivariate monitoring approach and the Ensemble Empirical Mode Decomposition (EEMD) method, which adaptively decomposes signals into various time scales, was called the EEMD-based multiscale PCA (EEMD-MSPCA). The method is very general in nature, which is why it could also be used in different areas and for various tasks. It can be used for controlling each time scale of decomposition or only the selected ones, for multivariate and multiscale filtering or for monitoring system operation on the basis of reconstructed i.e. filtered signals. The efficiency of the proposed EEMD-MSPCA method for the task of bearing condition monitoring and signal filtering was evaluated on simulated as well as on actual vibration and Acoustic Emission (AE) signals measured on a purpose built test stand. The fact that the proposed method is able to identify the local bearing defect of a very small size indicates that AE and vibration signals carry sufficient information on the bearing condition and that the proposed EEMD-MSPCA method ensures high-reliability bearing fault detection.
机译:为了检测大型低速滚动轴承的早期故障并确保主观性对过程的影响最小,提出了一种新的数据驱动的多元多尺度统计监测方法。提议的将主成分分析(PCA)多元监视方法与集成经验模式分解(EEMD)方法相结合的方法,该方法将信号自适应地分解为各种时间尺度,被称为基于EEMD的多尺度PCA(EEMD-MSPCA)。该方法本质上是非常通用的,这就是为什么它也可以在不同领域和各种任务中使用的原因。它可用于控制分解的每个时间尺度或仅控制选定的时间尺度,用于多变量和多尺度滤波或用于基于重构的即滤波后的信号监视系统操作。评估了拟议的EEMD-MSPCA方法用于轴承状态监测和信号过滤的效率,并在模拟以及在专用测试台上测量的实际振动和声发射(AE)信号上进行了评估。所提出的方法能够识别出很小尺寸的局部轴承缺陷这一事实表明,AE和振动信号携带了有关轴承状况的足够信息,并且所提出的EEMD-MSPCA方法确保了高可靠性的轴承故障检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号