首页> 外文期刊>Mechanical systems and signal processing >Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
【24h】

Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

机译:使用隐马尔可夫模型检测和诊断轴承和切削工具故障

获取原文
获取原文并翻译 | 示例

摘要

Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.
机译:在过去的几十年中,对加工过程和旋转机械中的新故障检测和诊断技术的研究引起了全球越来越多的关注。这一发展主要受到工业技术的飞速发展以及机械加工和机械系统复杂性的增加的刺激。在这项研究中,离散隐马尔可夫模型(HMM)被用于检测和诊断机械故障。使用以下两种情况成功测试和验证了该技术:工具磨损/断裂和轴承故障。在第一种情况下,模型可以正确检测到工具的状态(即锋利,磨损或损坏),而在第二种应用中,模型可以对植入两个不同发动机轴承中的故障的严重程度进行分类。在我们的故障严重性分类测试中,成功率超过95%。除了故障严重性以外,还开发了位置索引来确定故障位置。该指数已用于确定轴承故障的位置(内圈,球或外圈),平均成功率为96%。在两个监测案例中,开发HMM所需的培训时间均少于5 s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号