首页> 外文期刊>Mechanical systems and signal processing >A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction
【24h】

A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction

机译:基于年龄依赖的隐式半马尔可夫模型的设备健康预测方法

获取原文
获取原文并翻译 | 示例

摘要

Health monitoring and prognostics of equipment is a basic requirement for condition-based maintenance (CBM) in many application domains. This paper presents an age-dependent hidden semi-Markov model (HSMM) based prognosis method to predict equipment health. By using hazard function (h.f.), CBM is based on a failure rate which is a function of both the equipment age and the equipment conditions. The state values of the equipment condition considered in CBM, however, are limited to those stochastically increasing over time and those having non-decreasing effect on the hazard rate. The previous HSMM based prognosis algorithm assumed that the transition probabilities are only state-dependent, which means that the probability of making transition to a less healthy state does not increase with the age. In the proposed method, in order to characterize the deterioration of equipment, three types of aging factors that discount the probabilities of staying at current state while increasing the probabilities of transitions to less healthy states are integrated into the HSMM. With an iteration algorithm, the original transition matrix obtained from the HSMM can be renewed with aging factors. To predict the remaining useful life (RUL) of the equipment, hazard rate is introduced to combine with the health-state transition matrix. With the classification information obtained from the HSMM, which provides the current health state of the equipment, the new RUL computation algorithm could be applied for the equipment prognostics. The performances of the HSMMs with aging factors are compared by using historical data colleted from hydraulic pumps through a case study.
机译:设备的健康监控和预测是许多应用领域中基于状态维护(CBM)的基本要求。本文提出了一种基于年龄的隐式半马尔可夫模型(HSMM)预测设备健康的预后方法。通过使用危险函数(h.f。),CBM基于故障率,该故障率是设备寿命和设备状况的函数。但是,在煤层气中考虑的设备状态的状态值限于随时间随机增加的值和对危害率没有减小影响的值。先前基于HSMM的预测算法假定过渡概率仅取决于状态,这意味着过渡到较不健康的状态的概率不会随年龄的增长而增加。在所提出的方法中,为了表征设备的退化,将三种类型的老化因素打折了下来,这些老化因素降低了保持在当前状态的可能性,同时增加了向不太健康状态转变的可能性。利用迭代算法,可以使用老化因子更新从HSMM获得的原始转换矩阵。为了预测设备的剩余使用寿命(RUL),引入了危害率与健康状态转换矩阵结合。利用从HSMM获得的分类信息(可提供设备的当前健康状况),可以将新的RUL计算算法应用于设备的预测。通过案例研究,通过使用液压泵收集的历史数据,比较了带有老化因素的HSMM的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号