首页> 外文期刊>Mechanical systems and signal processing >A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis
【24h】

A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis

机译:自适应隐马尔可夫模型的多传感器监测设备健康预测新方法

获取原文
获取原文并翻译 | 示例

摘要

Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis.
机译:设备的健康预后被认为是基于状态的维护策略的关键过程。本文提出了一种基于自适应隐式半马尔可夫模型(AHSMM)的多传感器设备诊断和预测的集成框架。与隐藏的半马尔可夫模型(HSMM)不同,AHSMM中的基本算法首先经过修改,以减少计算量和空间复杂度。然后,使用最大似然线性回归变换方法来训练输出和持续时间分布,以重新估计所有未知参数。 AHSMM用于识别隐藏的退化状态并获得健康状态和持续时间之间的转换概率。最后,通过提出的危险率方程式,可以利用多传感器信息来预测设备的有用剩余寿命。我们的主要结果在实际应用中得到了验证:Caterpillar Inc.监控液压泵。结果表明,所提出的方法对于多传感器监控设备的健康预测更为有效。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2015年第12期|217-232|共16页
  • 作者单位

    Department of Industrial Engineering, Business School, University of Shanghai for Science & Technology, China;

    Department of Operations Management, Antai College of Economics & Management, Shanghai Jiao Tong University 535 Fahua Then Road, Shanghai 200052, China;

    Department of Industrial Engineering, Business School, University of Shanghai for Science & Technology, China;

    Department of Industrial Engineering, Business School, University of Shanghai for Science & Technology, China;

    Department of Industrial Engineering, School of Mines, China University of Mining and Technology, 1 Daxue Road, Xuzhou Jiangsu, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Prognosis; Monitoring; Hidden semi-Markov model; Adaptive training; Remaining useful lifetime;

    机译:预后监控;隐藏的半马尔可夫模型;适应性训练;剩余使用寿命;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号