...
首页> 外文期刊>Mechanical systems and signal processing >In situ Barely Visible Impact Damage detection and localization for composite structures using surface mounted and embedded PZT transducers: A comparative study
【24h】

In situ Barely Visible Impact Damage detection and localization for composite structures using surface mounted and embedded PZT transducers: A comparative study

机译:使用表面安装和嵌入式PZT传感器对复合结构进行原位裸露可见冲击损伤检测和定位:一项比较研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Application of guided waves excited by a network of PZT transducers integrated with a given structure is one of the promising approaches to Structural Health Monitoring (SHM). The performance of a SHM system based on PZT network is rooted in two distinct areas of the technology development, that is the hardware and the signal analysis. The first includes the type of transducers used to built a network and the way of their integration with a monitored structure. For composites, besides the possibility of the transducers attachment to a surface of an element, also embedding of PZTs into their internal structure is available. In the article Barely Visible Impact Damage (BVID) detection capabilities as well as selected physical properties of the embedded and surface mounted PZT transducers are compared in broad frequency range of the excitation. Among the compared parameters are the impedance and capacitance spectra up to 600 kHz. The damage detection capabilities are compared in the range 100-350 kHz. In addition to purely qualitative detection of damages a new algorithm of their localization is proposed and compared between the embedded and surface attached transducers for the frequency optimal to detect BVIDs.
机译:由与给定结构集成的PZT换能器网络激发的导波的应用是结构健康监测(SHM)的有前途的方法之一。基于PZT网络的SHM系统的性能植根于技术开发的两个截然不同的领域,即硬件和信号分析。第一个包括用于构建网络的换能器的类型以及它们与受监视结构的集成方式。对于复合材料,除了可以将换能器附着到元件表面上之外,还可以将PZT嵌入其内部结构中。在文章中,在激发的宽频率范围内比较了裸露可见冲击损伤(BVID)的检测能力以及嵌入式和表面安装PZT换能器的选定物理特性。在比较的参数中,阻抗和电容谱高达600 kHz。在100-350 kHz范围内比较了损坏检测功能。除了对损坏进行纯定性检测外,还提出了一种新的定位算法,并在嵌入式和表面连接的换能器之间进行比较,以找到检测BVID的最佳频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号