首页> 外文期刊>Mechanical systems and signal processing >Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis
【24h】

Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis

机译:基于多重分形熵的自适应多小波构造及其在机械复合故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Compound-fault diagnosis of mechanical equipment is still challenging at present because of its complexity, multiplicity and non-stationarity. In this work, an adaptive redundant multiwavelet packet (ARMP) method is proposed for the compound-fault diagnosis. Multiwavelet transform has two or more base functions and many excellent properties, making it suitable for detecting all the features of compound-fault simultaneously. However, on the other hand, the fixed basis function used in multiwavelet transform may decrease the accuracy of fault extraction; what's more, the multi-resolution analysis of multiwavelet transform in low frequency band may also leave out the useful features. Thus, the minimum sum of normalized multifractal entropy is adopted as the optimization criteria for the proposed ARMP method, while the relative energy ratio of the characteristic frequency is utilized as an effective way in automatically selecting the sensitive frequency bands. Then, The ARMP technique combined with Hilbert transform demodulation analysis is then applied to detect the compound-fault of bevel gearbox and planetary gearbox. The results verify that the proposed method can effectively identify and detect the compound-fault of mechanical equipment.
机译:机械设备的复合故障诊断由于其复杂性,多样性和不稳定性,目前仍具有挑战性。在这项工作中,提出了一种用于复合故障诊断的自适应冗余多小波包(ARMP)方法。多小波变换具有两个或多个基本函数并具有许多出色的性能,使其适合同时检测复合故障的所有特征。但是,另一方面,多小波变换中使用的固定基函数可能会降低故障提取的准确性;而且,低频带多小波变换的多分辨率分析也可能遗漏有用的功能。因此,采用归一化多重分形熵的最小和作为优化ARMP方法的准则,同时利用特征频率的相对能量比作为自动选择敏感频段的有效方法。然后,将ARMP技术与希尔伯特变换解调分析相结合,以检测锥齿轮箱和行星齿轮箱的复合故障。结果表明,该方法能够有效地识别和检测机械设备的复合故障。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2016年第8期|742-758|共17页
  • 作者单位

    State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China,School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China,Dongfeng Liuzhou Motor Co., Ltd, Liuzhou 545005, Guangxi, China;

    State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

    School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;

    Technology Center, CNPC Logging Co., Xi'an 710077, Shaanxi, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault diagnosis; Compound-fault; Adaptive multiwavelet; Multifractal entropy;

    机译:故障诊断;复合故障自适应多小波多重分形熵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号