首页> 外文期刊>Mechanical systems and signal processing >Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis
【24h】

Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

机译:基于Gauss-Hermite积分的贝叶斯推理的最优小波参数,用于轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.
机译:滚动轴承通常用于机器中,以为旋转轴提供支撑。轴承故障可能会导致意想不到的机器故障,并增加经济成本。为防止机器故障并减少不必要的经济损失,应及早发现轴承故障。由于小波变换可用于突出由局部轴承故障引起的脉冲,因此小波变换已被广泛研究并证明是最有效的轴承故障诊断方法之一。本文提出了一种新的基于高斯-赫尔姆特积分的贝叶斯推断方法来估计小波参数的后验分布。本文的创新点说明如下。首先,构造了一个小波参数的非线性状态空间模型来描述小波参数与假设测量之间的关系。其次,假设小波参数和假设测量的联合后验概率密度函数服从联合高斯分布,从而为状态空间模型生成高斯扰动。第三,引入高斯-赫尔米特积分来分析预测和更新联合高斯分布的矩,从而得出最优的小波参数。最后,进行最优小波滤波以提取轴承故障特征,从而识别局部轴承故障。研究了两个实例来说明所提出的方法如何工作。通过与快速峰形图进行两次比较,可以证明所提出的方法比快速峰形图具有更好的外观检查性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号