首页> 外文期刊>Journal of Sound and Vibration >Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults
【24h】

Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults

机译:用于确定不同轴承故障的反对称实拉普拉斯小波参数的联合后验概率分布的光滑度指数引导贝叶斯推断

获取原文
获取原文并翻译 | 示例
           

摘要

Rolling element bearings are one of the most common components used in machines and they are used to support rotating shafts. Unexpected bearing failures may cause machine breakdown which results in economic loss. Detection of bearing faults is crucial to prevent bearing failures. Vibration based signal processing methods have been proven to be effective in identifying different bearing faults. Among different signal processing methods, wavelet analysis is widely investigated because it is able to highlight the similarity between wavelet functions with different wavelet parameters and impulses caused by bearing faults. In wavelet analysis, two topics are of great concern. The first is how to choose a suitable wavelet mother function for bearing fault diagnosis. In recent studies, an anti symmetric real Laplace wavelet or impulse response wavelet has been experimentally proven to have a high similarity with impulses caused by bearing faults. Therefore, anti symmetric real Laplace wavelet is chosen as the wavelet mother function in this paper. The second is how to determine the optimal wavelet parameters so as to enhance the ability of wavelet analysis. Based on the anti symmetric real Laplace wavelet, smoothness index based Bayesian inference is proposed in this paper to establish joint posterior probability density functions of wavelet parameters, which reflect graphical relationships between wavelet parameters. The smoothness index is chosen because it is not only able to quantify bearing fault signals, but also has upper and lower bounds, compared with other metrics, such as wavelet entropy, Shannon entropy, kurtosis, sparsity measurement, etc. For Bayesian inference, a general particle filter is adopted to iteratively calculate and update joint posterior probability density functions of wavelet parameters. Once the joint posterior probability density functions of wavelet parameters are available, the optimal wavelet parameters are determined and an optimal wavelet filtering is conducted to extract bearing fault signatures. Real case studies are investigated to illustrate how the proposed method works. The results show that the proposed method can determine joint posterior probability density functions of wavelet parameters and is effective in identifying different bearing faults. (C) 2015 Elsevier Ltd. All rights reserved.
机译:滚动轴承是机器中最常用的组件之一,用于支撑旋转轴。意外的轴承故障可能会导致机器故障,从而造成经济损失。轴承故障的检测对于防止轴承故障至关重要。事实证明,基于振动的信号处理方法可以有效地识别不同的轴承故障。在不同的信号处理方法中,小波分析得到了广泛的研究,因为它能够突出显示具有不同小波参数的小波函数与轴承故障引起的脉冲之间的相似性。在小波分析中,两个主题非常重要。首先是如何选择合适的小波母函数进行轴承故障诊断。在最近的研究中,反对称实拉普拉斯小波或脉冲响应小波已通过实验证明与轴承故障引起的脉冲具有高度相似性。因此,本文选择反对称实拉普拉斯小波作为小波母函数。其次是如何确定最优的小波参数,以增强小波分析的能力。基于反对称实拉普拉斯小波,提出基于光滑度指数的贝叶斯推断,建立小波参数联合后验概率密度函数,以反映小波参数之间的图形关系。选择平滑度指数是因为与其他度量(例如小波熵,Shannon熵,峰度,稀疏度测量等)相比,它不仅能够量化轴承故障信号,而且具有上下限。对于贝叶斯推断,a采用通用粒子滤波器迭代计算和更新小波参​​数的联合后验概率密度函数。一旦小波参数的联合后验概率密度函数可用,就确定最佳小波参数,并进行最佳小波滤波以提取轴承故障特征。对实际案例进行了研究,以说明所提出的方法是如何工作的。结果表明,该方法能够确定小波参数的联合后验概率密度函数,对于识别不同的轴承故障是有效的。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号