首页> 外文期刊>Mechanical systems and signal processing >Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings
【24h】

Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings

机译:自适应噪声的完全集合局部均值分解及其在滚动轴承故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Mode mixing resulting from intermittent signals is an annoying problem associated with the local mean decomposition (LMD) method. Based on noise-assisted approach, ensemble local mean decomposition (ELMD) method alleviates the mode mixing issue of LMD to some degree. However, the product functions (PFs) produced by ELMD often contain considerable residual noise, and thus a relatively large number of ensemble trials are required to eliminate the residual noise. Furthermore, since different realizations of Gaussian white noise are added to the original signal, different trials may generate different number of PFs, making it difficult to take ensemble mean. In this paper, a novel method is proposed called complete ensemble local mean decomposition with adaptive noise (CELMDAN) to solve these two problems. The method adds a particular and adaptive noise at every decomposition stage for each trial. Moreover, a unique residue is obtained after separating each PF, and the obtained residue is used as input for the next stage. Two simulated signals are analyzed to illustrate the advantages of CELMDAN in comparison to ELMD and CEEMDAN. To further demonstrate the efficiency of CELMDAN, the method is applied to diagnose faults for rolling bearings in an experimental case and an engineering case. The diagnosis results indicate that CELMDAN can extract more fault characteristic information with less interference than ELMD.
机译:由间歇信号产生的模式混合是与局部均值分解(LMD)方法相关的烦人问题。集成局部均值分解(ELMD)方法基于噪声辅助方法在一定程度上缓解了LMD的模式混合问题。但是,ELMD产生的乘积函数(PF)通常包含相当大的残留噪声,因此需要进行大量的集成试验以消除残留噪声。此外,由于将高斯白噪声的不同实现方式添加到原始信号中,因此不同的试验可能会生成不同数量的PF,从而难以采用合计平均值。为了解决这两个问题,本文提出了一种新的方法,称为带有自适应噪声的完全集成局部均值分解(CELMDAN)。该方法在每个试验的每个分解阶段都会添加特定的自适应噪声。而且,在分离每个PF之后获得唯一的残基,并且所获得的残基用作下一阶段的输入。分析了两个模拟信号以说明CELMDAN与ELMD和CEEMDAN相比的优势。为了进一步证明CELMDAN的有效性,该方法被用于诊断滚动轴承在实验案例和工程案例中的故障。诊断结果表明,与ELMD相比,CELMDAN可以提取更多的故障特征信息,并且干扰更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号