首页> 外文期刊>Mechanical systems and signal processing >Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors
【24h】

Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

机译:数据驱动的飞机燃气涡轮发动机执行器和传感器的故障检测,隔离和评估

获取原文
获取原文并翻译 | 示例

摘要

In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any α priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.
机译:在这项工作中,提出并开发了一种数据驱动的故障检测,隔离和估计(FDI&E)方法,专门用于监视飞机燃气轮机致动器和传感器。建议的FDI&E过滤器是通过仅使用引擎每个操作点上的可用系统I / O数据直接构建的。包含有限数量的频率的正弦输入会激励健康的燃气涡轮发动机。首先,通过使用输入和输出信号的FFT估算相关的系统马尔可夫参数,以获得燃气涡轮发动机的频率响应。然后将这些数据用于故障检测,隔离和估计滤波器的直接设计和实现。因此,我们提出的方案不需要任何系统线性模型的α先验知识,也不需要每个工作点的极点数和零点数。我们已经研究了频率响应数据的大小对我们提出的方案的性能的影响。我们已经通过全面的案例研究模拟表明,通过仅在有限数量的频率上访问系统的频率响应,就可以实现根据混淆矩阵标准定义的理想故障检测,隔离和估计性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号