首页> 外文期刊>Mechanical systems and signal processing >Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
【24h】

Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

机译:改进的带压缩感知的卷积深度置信网络在滚动轴承故障特征学习中的应用

获取原文
获取原文并翻译 | 示例

摘要

The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.
机译:从滚动轴承收集的振动信号通常是复杂且不稳定的,且背景噪声很大。因此,有效地学习所收集的振动信号的典型故障特征是一个巨大的挑战。本文针对滚动轴承的特征学习和故障诊断,提出了一种带有压缩感知(CS)的改进卷积深度置信网络(CDBN)。首先,采用CS来减少振动数据量,以提高分析效率。其次,用高斯可见单位构造一个新的CDBN模型,以增强压缩数据的特征学习能力。最后,采用指数移动平均(EMA)技术来提高构造的深度模型的泛化性能。将所开发的方法用于分析实验滚动轴承的振动信号。结果证实了所开发的方法比传统方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号