机译:改进的带压缩感知的卷积深度置信网络在滚动轴承故障特征学习中的应用
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
School of Aeronautics, Northwestern Pofytechnical University, 710072 Xi'an, China;
Rolling bearing; Feature learning; Improved convolutional deep belief network; Compressed sensing; Exponential moving average;
机译:深度多尺度卷积转移学习网络:可变工作条件与域下滚动轴承智能故障诊断的新方法
机译:滚动轴承故障诊断使用深度卷积自动化网络和改进的Gustafson-kessel聚类
机译:基于变分模式分解和深卷积神经网络的风力涡轮机滚动轴承故障诊断
机译:基于深信度网络的深度特征提取智能滚动轴承故障诊断
机译:内部和外部特征工程应用于卷积神经网络的深度学习,用于视觉测量和自定位中的单眼相对姿态估计
机译:基于集成卷积神经网络和深度神经网络的特征融合方法进行轴承故障诊断
机译:滚动轴承故障诊断使用深度卷积自动化网络和改进的Gustafson-kessel聚类