首页> 外文期刊>Mechanical systems and signal processing >Sparse polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for global sensitivity analysis
【24h】

Sparse polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for global sensitivity analysis

机译:基于Bregman-迭代贪婪坐标血缘循环的稀疏多项式混沌扩展,用于全球敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

Polynomial chaos expansion (PCE) is widely used in a variety of engineering fields for uncertainty and sensitivity analyses. The computational cost of full PCE is unaffordable due to the 'curse of dimensionality' of the expansion coefficients. In this paper, a novel methodology for developing sparse PCE is proposed by making use of the efficiency of greedy coordinate descent (GCD) in sparsity exploitation and the capability of Bregman iteration in accuracy enhancement. By minimizing an objective function composed of the ℓ_1 norm (sparsity) of the polynomial chaos (PC) coefficients and regularized ℓ_2 norm of the approximation fitness, the proposed algorithm screens the significant basis polynomials and builds an optimal sparse PCE with model evaluations much fewer than unknown coefficients. To validate the effectiveness of the developed algorithm, several benchmark examples are investigated for global sensitivity analysis (GSA). A detailed comparison is made with the well-established orthogonal matching pursuit (OMP), least angle regression (LAR) and two adaptive algorithms. Results show that the proposed method is superior to the benchmark methods in terms of accuracy while maintaining a better balance among accuracy, complexity and computational efficiency.
机译:多项式混乱膨胀(PCE)被广泛用于各种不确定性和灵敏度分析工程领域。全PCE的计算成本的膨胀系数的“维数灾”买不起所致。在本文中,用于开发稀疏PCE一种新颖的方法是通过利用在稀疏开发贪婪坐标下降(GCD)的效率和布雷格曼迭代在提高精度的能力提出。通过最小化逼近健身的多项式混乱(PC)系数和正规化ℓ_2规范的ℓ_1规范(稀疏)组成的目标函数,该算法屏幕上的显著基础多项式和建立最佳的稀疏PCE与模型评估比少得多未知系数。为了验证开发的算法的有效性,几个基准实施例研究了全局灵敏度分析(GSA)。详细的比较与成熟的正交匹配追踪(OMP)制成,至少角度回归(LAR)和两个自适应算法。结果表明,该方法优于在精度方面的基准方法,同时保持准确度,复杂度和计算效率之间取得更好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号