首页> 外文期刊>Mechanical systems and signal processing >Online displacement extraction and vibration detection based on interactive multiple model algorithm
【24h】

Online displacement extraction and vibration detection based on interactive multiple model algorithm

机译:基于交互式多模型算法的在线位移提取与振动检测

获取原文
获取原文并翻译 | 示例

摘要

Vibration detection and displacement extraction of structures are of great significance to structural health monitoring(SHM). Accelerometers are one of the most widely used sensors in SHM, but displacement is not the direct output of accelerometers. There has been substantial research undertaken on the state parameter estimation of structure. Most studies in the field of structural state estimation have only focused on offline structure analysis. Few empirical studies have focused on online displacement extraction and verification. The present study aimed to explore an adaptive online displacement extraction and vibration detection method with only acceleration measurement. The methodological approach taken in this study is a mixed methodology based on the interactive multiple model (IMM) Kalman filter. Vision-based displacement extraction and segmental integration based displacement extraction are designed as verification schemes. Four groups of experiments were carried out to verify the proposed method. The findings show that the damping vibration model is suitable for capturing obvious vibration, the constant acceleration model is suitable for capturing slight vibration, and the constant position model is suitable for static state tracking. For obvious vibration, the IMM Kalman filter can be effectively performed for displacement extraction and vibration detection. For slight vibration, the performance of the IMM segmental integration is good. It is hoped that this research will contribute to a deeper understanding of displacement extraction and vibration detection in SHM.
机译:结构的振动检测和位移提取对结构健康监测(SHM)具有重要意义。加速度计是SHM中最广泛使用的传感器之一,但位移不是加速度计的直接输出。对结构的国家参数估计进行了大量研究。结构状态估计领域的大多数研究仅重点关注离线结构分析。少数实证研究专注于在线排量提取和验证。本研究旨在探讨仅加速度测量的自适应在线位移提取和振动检测方法。本研究采用的方法方法是基于交互式多模型(IMM)卡尔曼滤波器的混合方法。基于视觉的位移提取和基于分段集成的位移提取被设计为验证方案。进行四组实验以验证提出的方法。结果表明,阻尼振动模型适合捕获明显的振动,恒定的加速模型适合于捕获轻微的振动,并且恒定位置模型适用于静态跟踪。为了明显振动,可以有效地执行IMM卡尔曼滤波器以进行位移提取和振动检测。对于轻微的振动,IMM节段集成的性能良好。希望该研究有助于更深入地了解SHM中位移提取和振动检测。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第6期|107581.1-107581.31|共31页
  • 作者单位

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    School of Geodesy and Geomatics Wuhan University Wuhan 430000 PR China;

    School of Land Science and Technology China University of Geosciences Beijing Beijing 100083 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430000 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Interacting multiple model; Kalman filter; Displacement extraction; Vibration detection; Accelerometer; Segmental integration;

    机译:互动多种模型;卡尔曼滤波器;排量提取;振动检测;加速度计;分段集成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号