首页> 外文期刊>Mechanical systems and signal processing >Study on robust aerial docking mechanism with deep learning based drogue detection and docking
【24h】

Study on robust aerial docking mechanism with deep learning based drogue detection and docking

机译:基于深度学习的滴灌检测与对接的鲁棒空中对接机制研究

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a simple and a robust bistable docking system with a deep learning based real-time drogue detection and tracking system for Unmanned Aircraft Systems (UAS) for mid-air autonomous aerial docking. Secure aerial docking mechanisms between the leader and follower aerial vehicles with effective drogue detection and tracking strategies are fundamental challenges during the air-to-air docking phase of autonomous aerial docking. To confront those issues, this paper not only presents the design of a bistable-based aerial docking mechanism, but also proposes effective deep learning based realtime drogue detection using a convolutional neural network (CNN) and real-time tracking algorithm using a point cloud algorithm. To ensure novelty and robustness for the aerial docking mechanism, a foldable bistable gripper-type mechanism is designed to increase the grasping performance with simplicity and adaptability. The proposed gripper acts as a drogue by itself to grasp a probe which is attached to the follower aerial vehicle. To employ an effective drogue detection method, the deep learning based real-time object detection algorithm, YOLOv3, is used to implement the drogue detection system. The proposed new probe-and-drogue type bistable docking system has the advantages of being simple and robust. The deep learning based real-time drogue detection method increases the detection rate. Moreover, the real-time tracking algorithm with a depth camera system does not require a GPS/INS system and many other sensors to follow the drogue movement in the air.
机译:本文提出了一种简单而坚固的双稳态对接系统,具有深度学习的基于深度学习的实时滴注检测和用于无人机系统(UAS)的跟踪系统,用于中空自主空中航空对接。安全的空中航空公司之间的安全空中对接机制,具有有效的滴注检测和跟踪策略是自主空中对接期间的空到空气对接期间的根本挑战。要面对这些问题,本文不仅介绍了基于双稳态的空中对接机制的设计,还提出了使用卷积神经网络(CNN)和使用点云算法的实时跟踪算法的基于深度学习的实时滴度检测。为确保空中对接机构的新颖性和鲁棒性,设计可折叠的双稳态夹具型机构,以简化简单和适应性来增加抓握性能。所提出的夹具自身用作摩擦,以掌握连接到从动架空车辆的探针。为了采用有效的滴度检测方法,基于深度学习的实时对象检测算法YOLOV3用于实现滴漏检测系统。所提出的新探头和滴灌型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时滴注检测方法增加了检测率。此外,具有深度摄像机系统的实时跟踪算法不需要GPS / INS系统以及许多其他传感器来遵循空气中的滴灌运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号